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Abstract

Developments in valuation theory, specially the study of algebraically closed valued
fields, have used the model theory of C-minimal structures in different places (spe-
cially the work of Hrushovski-Kazdhan in [HK] and Haskell-Hrushovski-Macpherson
in [HHM]). We intend with this text both to divulgate a basic comprehension of
C-minimality for those mathematicians interested in valuation theory having a basic
knowledge in model theory and to provide a slightly different presentation of the cell
decomposition theorem proved by Haskell and Macpherson in [HM94].

Studying algebraic structures from a model-theoretic point of view can be described
as studying the category of definable sets of algebraic structures: objects correspond
to definable sets (i.e., solution sets of a particular first order formula) and morphisms
correspond to definable functions (i.e., functions for which the graph is a definable set).
A model theoretic perspective allows different ways of generalizing properties one can
extract from algebraic structures. For instance, quantifier elimination for real closed fields
(R,<,4+,-,0,1) implies that definable subsets of R are exactly the semi-algebraic sets
but also induced the fruitful notion of o-minimality: an ordered structure (M, <,...) is
o-minimal if every definable subset of M is a finite union of points and intervals. In the
same spirit, quantifier elimination for theories of valued structures like algebraically closed
valued fields or the p-adic fields induce different notions of minimality, C-minimality being
one of them. The aim of the text is to provide the reader with a basic comprehension of
C-minimality (hopefully giving her tools to easy the reading of articles like [HK| [HHM]),
and to expose a proof of a deep theorem proved by Haskell and Macpherson in [HM94]:
the cell decomposition theorem for dense C-minimal structures. We do not present new
results and most of the article follows the same scheme as [HM94] though most of the
proofs (and some definitions) have been simplified (and in some cases corrected). Section
1 contains a brief introduction to C-minimality together with definitions, examples and
basic properties. In section 2 we define what cells are and study definable functions.
Finally the cell decomposition theorem is proved in section 3 together with some results
about dimension.

Notation will be standard with the following remarks. Capital L is restricted for first-
order languages (with all possible subscripts and superscripts like L', Lg, etc.). For a
set A, L(A) is the expansion of L with a new constant for every element in A. We say
a formula ¢ has parameters from A if it is an L(A)-formula. Given an L-structure M,
A C M™ and a formula ¢(z) with |x| = n (the length of the tuple), we denote by ¢(A)
the set {a € A : M = ¢(a)}. We say A is definable if there is an L(M)-formula ¢(x)



(i.e., allowing parameters from M) such that A = ¢(M). If ¢ is an L-formula we also say
A is O-definable. We allow a handy ambiguity using M both for an L-structure and its
universe. The automorphism group of M is denoted by Aut(M). For an ultrametric space
M with map d : M? — I'U{oo} we will denote I'U{co} by dM and assume the function d
is always surjective. If the ultrametric comes from a valuation function v, we also denote
dM by vM. The use of I" will be restricted to other purposes through the text.

1 Introduction to C-minimality: C-sets, trees and C-minimal
structures

We start this section introducing C-sets and good trees:

Definition 1. Let C(x, y, z) be a ternary relation. A C'-set is a structure (M, C) satisfying
axioms (C1)-(C4):

(C1) Vayz(C(x,y,2) = C(x, 2,9)),

(C2) Vayz(C(z,y,2) = ~C(y, z,2)),

(C3) Vayzw(C(z,y,2) = (Clw,y,2) V C(z,w, 2))),
(C4) Vay(z #y — C(x,y,y)),

(D) Vay(z #y — 32(2 £y A C(2,y,2))).

If in addition (M, C) satisfies axiom (D) we say it is a dense C-set.

Examples 2.
e The trivial C-relation on a set M defined by C(z,y,2) & x # y = 2.

e For every ultrametric d : M2 — TI' U {oo} there is a C-relation defined by C(x,y, z) <
d(z,y) < d(y, z). In particular, for a valued structure there is an associated C-relation
defined by the induced ultrametric d(z,y) = v(z — y), ie., C(x,y,2) < vz —y) <
v(y — z).

e For T a tree and A a set of branches of T' (i.e., maximal chains of T'), there is a C-relation
on A defined by C(z,y,2) @ xNy=zNz CyNz.

Let (T, <,inf, F') be a meet semi-lattice tree where inf(a, b) denotes the meet of a and
b and F' is a unary predicate denoting the leaves of T" (we will abuse notation letting
inf(A,b) := sup{inf(a,b) : a € A} if existing).
Definition 3. A good tree is a structure (T, <,inf, F) satisfying axioms (7'1) — (7'4):
(T1) (T, <,inf) is a meet semi-lattice tree,

(T2) Va(F(z) <> —-Jy(z < y)) (F is the set of leaves),

(T3) VaTJy(z <y A F(y)) (T has leaves everywhere),

(T4) Va(=F(x) = Jyz(y # zAx <y Az < z)) (every point which is not a leaf branches),
(D) Vay(F(x) A F(y) — Jw(w # y A F(w) Ainf(z,y) < inf(y, z))) (the set of leaves is

dense).

If in addition it satisfies (D’) then it is called a dense good tree.

Theorem (Adeleke, Neumann, Delon). C-sets and good trees are bi-interpretable classes.



Bi-interpretability, essentially means that each structure can be recovered as a quotient
of the other by a definable equivalence relation. Adeleke and Neumann shown one direction
of this theorem in [AN9S| for dense C-sets and the statement as it is presented here is due
to Delon in [Delll]. We briefly sketch the construction. For a good tree T, we define a
C-relation on the set of leaves F' by:

C(z,y,2) < inf(z,y) = inf(x, z) < inf(y, 2).
o g v

inf(3, )

inf(a, B) = inf(a, )

For the converse, if (M,C) is a C-set, there is a good tree denoted T'(M) and called
the canonical tree of M, which is interpretable in M, having as its universe the set of
equivalence classes of elements of M? modulo the equivalence relation ~ defined by:

(al, ag) ~ (bl, b2) iff M ): —|C(a1, by, bg) A —\C(GQ, b1, bQ) A —|C(b1,a1,a2) A —|C(b2,a1,a2).

The set of leaves of T'(M) equipped with the C-relation above defined is definably isomor-
phic to M. This allows us to identify M in T(M) with the set of leaves F' and implies
in particular that an embedding of C-sets f : M — N induces an embedding of good
trees f : T(M) — T(N) and that the automorphism groups Aut(M) and Aut(T(M)) are
canonically isomorphic. In all [AN9S, [HM94, MS96] C-sets were by assumption dense.
Without the density assumption we still have that (M, C) is dense if and only if T'(M)
is dense. In an ultrametric space M having a C-relation defined as in example [2, T'(M)
corresponds to a tree where each branch is isomorphic to a copy of the ordered set d M.
It is also isomorphic to the set of closed balls with inclusion as its order.

A C-structure is simply a C-set with possibly extra structure. In what follows we work
in a fixed C-structure M. We use lower case Greek letters «, 3,y to denote both elements
of M and leaves in T'(M) and lower case letters a, b, ¢ to denote arbitrary elements in T'(M)
(contrary to the usual use in valuation theory). From now on we let T := T'(M) \ F, that
is, all the elements in T (M) which are not leaves. For a € T, we define an equivalence
relation E, on (as) (i.e. {b€T(M):b>a}) by

zE.y < a < inf(z,y).

Equivalences classes are called cones at a. The branching number of a, denoted by
bn(a), is the number of equivalence E,-classes. For a,b € T such that a < b, the cone of
b at a, denoted by T',(b), is the E,-class of b. We abuse notation using I';(b) to denote
also the subset of M defined by I'5(b) N F' (again identifying the set of leaves F' with M).
In particular, for « € M and a € T (M) such that a < «, the cone I'y(a) will be usually
taken to be the set {# € M : a < inf(a, §)}. For «, 5 € M, we then have that

Finf(a,ﬁ)(a) = {1’ eM:M ': C(,B,CC,OZ)}-

In an ultrametric space cones correspond to open balls. For example, if K is a valued field
and we add a symbol for the C-relation defined as in the example [2, we have that

Finf(a,ﬁ)(a) = {l’ €eK:K ’: 0(5;37704)} = {33 eK: K ': ’U(a — /8) < U(x — a)}



For practical reasons we treat M as a cone at oo, that is, we extend T'(M) by adding a
new element —oo satisfying —oo < a for all a € T(M) and we let I'_(a) := M for all
a € M. For a € T(M) an n-level set at a corresponds to the set {x € T : a < x} with n
cones at a removed. For n > 0 we require that bn(a) > n. In particular, for a € T (M),
the O-level set at the 0-level set at a is denoted in symbols by A,. If a € T', A, corresponds
to the union of all cones at a; if a = « € M, then A, = {a}. For o, 8 € M we have that

Aini(ap) = {2 € M : M | ~Clz, o, §)}.
0-level sets correspond in ultrametric spaces to closed balls, for instance,
Aint(a,) ={z € M : M |z ~Clz,a,0)} ={z € M : M = d(z,a) = d(a, )}

For by,...,b, € T such that a < b; and —b;E,b; for all 1 < ¢ < j < n, the expression
Ao(b1, ..., by) denotes the n-level set where the n cones removed correspond to T',(b;) for
1 < i < n (1-level sets are called “thin annulus” in [HK]). Both for cones an n-level
sets, the point a is called its basis and we let min(-) to be the function sending cones and
n-level sets to their bases. Finally, for a,b € T(M) U {—o0}, such that a < b, the interval
(a,b) denotes in T'(M) the set {z € T : a < x < b} and in M the set I',(b) \ Ap. Cones,
intervals and n-level sets can be seen as subsets of T'(M) or M and we usually let the
context specify which one is intended. We denote the set of all cones (including M) by
C, the set of all intervals by Z and the set of all n-levels by £, for n < w. In M, the set
of cones C forms a uniformly definable basis of clopen sets (“uniformly” here means the
same formula is used, changing its parameters, to define all basic open sets ). We work
with the topology generated by this basis which is Hausdorff and totally disconnected.

Definition 4. A C-structure M is C'-minimal if for every elementary equivalent structure
N = M, every definable subset D C N is definable by a quantifier free formula using only
the C-predicate. A complete theory is C-minimal if it has a C-minimal model.

Examples 5.

e By quantifier elimination, algebraically closed valued fields are C-minimal with respect
to the C-relation defined by the associated ultrametric (i.e., C(z,y, 2) < v(z—y) < v(y—
z)). In [HM94] it was proved that C-minimal fields correspond exactly to algebraically
closed valued fields. If M is a C-minimal field, for all a« € T" we can identify the set of
cones at a with the residue field. Since the residue field is algebraically closed, we have
in particular that bn(a) > X for all a € T..

e By aresult of Lipshitz and Robinson in [LR9S§], algebraically closed valued fields enriched
with all strictly convergent analytic functions are C-minimal.

e Also by quantifier elimination the additive group of the p-adic field is C-minimal.
Though the p-adic field is not.

We now study basic properties of C-minimal structures and assume from now on that
M is a C-minimal structure M in a language L. By axioms (C1) — (C4) below presented,
cones and 0-level sets form a directed family, that is, for By, Bs € C U Ly one of the
following holds:

By C By By C By ByN By = 0.

By C-minimality every L(M)-formula ¢(x) where |z| = 1 is equivalent to a boolean
combination of formulas of the form C(aq,z,a2) and —~C(z, aq, ), which respectively



define cones and 0-level sets. For instance, finite definable sets {ay,...,a,} correspond
to the union of O-level sets ~C(z,a;, ;) for 1 < i < n and M itself to {z €: M |=
-C(a,z,a)}. A Swiss cheese S is a set of the form By \ (B1U---UB,,) where each B; is a
cone or O-level set, B; C By for all 0 < i and B; N B; =) for all 0 < i < j; sets By, ..., By
are called the holes of S. It is not difficult to prove that every definable set defined by
a boolean combination of cones and 0-level sets can be expressed as a disjoint union of
Swiss cheeses (see [Hol95]). An application of the compactness theorem implies then the
following lemma:

Lemma 6. Let ¢(x,y) be an L-formula with |x| = 1. There exist positive integers ni and
no such that for all o € MW, O(M, ) is equal to a disjoint union of at most ny Swiss
cheeses each with at most noy holes.

Proof: Suppose not. By compactness there is an elementary extension M < M; and
ae M 1|y‘ such that ¢(M;, «v) is not a finite disjoint union of Swiss chesses, which contradicts
C-minimality. O

In chapter 2 we will refine the previous lemma showing that every definable unary
subset of M can be uniformly decomposed into a finite disjoint union of points, cones,
intervals and n-level sets. This will be part of the cell decomposition theorem. Given
a set N interpretable in M, that is, a set which correspond to M"™/FE for E a definable
equivalence relation, the induced structure on N corresponds to the structure N together
with all relations of cartesian powers of N which are interpretable in M. In many cases,
model theoretic properties from M impose model theoretic properties on their induced
structures. We show some examples.

Definition 7.
1. Let o € M. There is a definable equivalence relation R, on M defined by

R, (B1, 52) < inf (S, ) = inf(f2, a).

The structure Br(«) (the branch of « is the induced structure by M on M/R,,.

2. For a,f € M and a = inf(a, 3), the structure C(a) is the induced structure by M
on M/E,. It corresponds to the induced structure on the set of cones at a.

The structure Br(«) is isomorphic as an order to a<. Thus, in an ultrametric space,
the order Br(«) is isomorphic to dM, for every o € M. It is worth noticing that not every
branch of T'(M) has a leaf. In particular, in an ultrametric space M, branches of T'(M) can
be seen as pseudo-Cauchy sequences (which do not necessarily have a limit in M). Recall
an ordered structure (IV, <,...) is o-minimal is every definable subset D C N is a finite
union of intervals and points. A structure N is strongly minimal if every definable subset
D C N is either finite or cofinite (in all elementary equivalent structures). A consequence
of lemma [6] that will be often used is:

Lemma 8. The structure Br(a) is o-minimal for every a« € M. For all a € T, the
structure C(a) is either finite or strongly minimal.

Proof: Suppose towards a contradiction that there is a definable subset D of Br(B)
which is not a finite union of points and intervals. Let D’ be the union of all cones
Din(a,p(@) for inf(a, 8) € D. Tt is not difficult to see that D’ cannot be a finite union of
Swiss chesses which contradicts C-minimality. Analogously, let D be a definable infinite



and coinfinite subset D of C(a). Then the set D" defined as the union of all cones 'y ()
such that a/E, € D cannot be a finite union of Swiss cheeses, contradicting C-minimality.
Il

Compare the previous lemma to the fact that in an algebraically closed valued field,
the value group is o-minimal and the residue field is algebraically closed, hence strongly
minimal. In proofs, we will usually not make explicit reference to lemma [§| but use expres-
sions like “by o-minimality of the branch...” or “by strong minimality of the set of cones
at a”, etc. We use two lemmas stated without a proof in [HM94] and some corollaries that
will be later used (we provide a proof for lemmas |§| and which correspond to facts 1
and 2 in [HM94] in the appendix).

Lemma 9. Let D C M be a definable set. Then, there is no o € M such that for an
infinite number of nodes a < o we have both

Aa(@) N D # 0 and Ag(e) N (M \ D) # 0. (1)

Lemma 10. Let D C M be a cone and f : D — T be a definable function such that
f(a) € Br(a) foralla € D. Then there are no arbitrarily large sequences o = (o : i < N)
and B = (5; : i < N) satisfying on(ag,...,an, Bo,--.,n-1) defined by

N-1 N-1

N 1) & Brian) A\ inf(as, an) = inf(8;, an) > f(a).

1=0 =0

Next lemmas will give us different uniform bounds that will be later used for the proof

of the cell decomposition theorem.

Lemma 11. For every L-formula ¢(z,y) with |x| = 1, there is a positive integer N
such that for all a € T and all « € MW either |{T', € C : Ty C ¢(M,a)} < N or
e €C: Ty C —¢(M,a)}| < N.

Proof: Suppose there is no such N. By compactness, there are an elementary extension
M of M, a € T(M;) and a € MY such that both [{T'y € C : Ty € ¢(My,a)}| > o and

H{lq € C : Ty € =¢p(My,a)}| > Rg which contradicts the strong minimality of the set of
cones at a in M;. O

Lemma 12. For every formula ¢(z,y) with |x| = 1 there is a positive integer N such that
for all o € MW and all B € M the set

A={a € Br(B): Ma(B) Nd(M,a) # 0 and Aa(B) N =p(M, o) # 0}
has cardinality less than N.

Proof: If not, by compactness we get o and § in an elementary extension M; of M
such that A if infinite. This contradicts lemma [0 O

Lemma 13. For every formula ¢(z,y) with |z| = 1 there is a positive integer N such that
for all o € MW and all B € M, the cardinality of the set points in Br(B) which are ending
points of intervals maximally contained either in ¢(M,«) or in —¢(M, a) is less than N.

Proof: If not, by compactness we get a definable infinite discrete subset of Br(3) for
B € M; and M; an elementary extension of M. This contradicts o-minimality of Br(f).
O

Assuming density, every cone in a C-structure is infinite. As a consequence dense
C-minimal structures can distinguish between finite and infinite definable sets. We sum-
marize in the following lemma:



Lemma 14. Suppose M is dense. Then
1. Every cone is infinite.

2. For each L-formulas ¢(x,y) with |z| = 1, there is a positive integer Ny such that for
all € MW if |p(M, )| > Ny then |p(M, )| > Ro.

Proof: For 2 see [HM94] lemma 2.4. Point 1 follows directly from the density axiom
(assuming M is not just one point). IO

Notice that an ultrametric space M is dense (as a C-set) if and only if the order
dM \ {oco} has no maximal element.

2 Cell decomposition revisited

Heuristically, the aim of a cell decomposition theorem is to have a general description
of definable sets as unions of some special -and hopefully simple- definable sets called
cells. Usually one can also imply from it that a given dimension function behaves well
for definable sets. In most cases, cells are defined by induction: given a structure M, one
selects first a collection {D; € M : i € I} of definable subsets of M to be the family
of 1-cells and then defines by induction n-cells —commonly using definable functions—
which correspond to definable subsets of M™. We start this chapter defining what cells
are, discussing alternative definitions with examples. Later, we prove a uniform version
of 1-cell decomposition which gives a rough version of cell decomposition for C-minimal
structures (not necessarily dense). Then, assuming density, we study definable functions
and prove, in analogy with o-minimality, a monotonicity theorem for dense C-minimal
structures. Essentially we will prove that definable functions are “cellwise” continuous,
that is, we can always decompose their domain into finitely many cells on which the

function is continuous. 2

2.1 Cells

As before, we work in a C-minimal structure M in a language L. We start showing
how to define an induce C-relation on antichains of T'(M). Let S C T'(M) be an antichain
and let T'[S] be the closure of S under inf. It is easy to check that T'[S] is a good tree,
so the set of leaves in T[S] (which corresponds to S) is a C-set where the C-relation is
given by C(z,y, z) < inf(z,y) < inf(y,z). The C-set S having T'[S] as its canonical tree
is denoted by M[S]. Since M can be identified with the set of leaves of T'(M), and any
B C M forms an antichain in T'(M), we use the expressions T'[B] and M[B] viewing B as
a subset of T'(M). Notice that with this notation we have that T (M) = T'[M]. We define
now what 1-cells are. Given a set A, we denote by Al'l the set of all subsets of A of size
exactly r.

Definition 15 (1-cells). Let D be a definable subset of M and Ly be the language con-
taining only the predicate C.
(I) D is a 1-cell of type MU if there is {a, ..., a,} € M) such that:
(a) D={ai,....ar};
(b) Autr,(M[D]) acts transitively on D.

1. Property (2) is often phrased as the elimination of the quantifier 3°°.
2. All results were first proved in [HM94], though in the present exposition some definitions differ and
proofs have been changes accordingly.
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(II) D is a 1-cell of type CI") if there is {Hy, ..., H,} € CI"l such that:
(a) D = Uiz Hi;
(b) the set of bases A := {min(H;) : 1 < i <r} is an antichain;
(c) there is a positive integer k such that for all a € A the set {H; : min(H;) =
a,1 < i < r} has cardinality k;
(d) Autr,(M[A]) acts transitively on A.
(III) D is a 1-cell of type cly! (n < w) if there is {Hy, ..., H,} € £ such that
(a) D =Ui Hi;
(b) the set of bases A := {min(H;) : 1 <i < r} is an antichain of cardinality r;
(c) Autr,(M[A]) acts transitively on A.
(IV) D is a 1-cell of type IU"l if there is {I1, ..., I} € ZI"l such that
(a) D=U;_{1,..., I},
(b) the set of left end-points A := {a € T'(M) : a is a left end-point of I; for 1 <
j <r} is an antichain;
(c) there is a positive integer k such that for all a € A, {I; € {L,....I} :
a is a left end-point of I;}| = k;
(d) LNIj=0forall1 <i<j<m;
(e) Autr,(M][A]) acts transitively on A.

It is important to notice that a 1-cell can be of different types. For example a finite
1-cell B = {aq, ..., ;. } is of type M "] but also of type E([)T] since singletons are degenerated
O-level sets. More problematic, in a C-structure M having an element a € T'(M) such
that bn(a) = 2, the 1-cell B := A, is both of type £([)” and of type C! since it is also the
union of the two cones at a. We exhibit some examples.

Example 16. Let B := {a, 3,7} be a definable set of type M. Suppose that C(a, 3, 7)
holds as in the figure on the left. Then {a} is an orbit of Autr,(B) hence B can be
decomposed as the union of two 1-cells By := {a} and By := {3,~}. If in contrast we
suppose that there is no C-relation between «, 8 and +, then B is a 1-cell (figure in the
right).

By ={a} By={B,7}
B ={a, 8,7} B ={a, 8,7}

Example 17. Let a1, ...,a6 € T such that a; is the predecessor of a; 1 for all 1 < < 5.
Suppose in addition that bn(a;) = 2 for all 1 < i < 5. Let B :=T7 Uy UT'3 UTy, where
each I'; is a cone for 1 <14 < 4 as shown in the figure (in figures, points are connected by a
dotted line if there is no point between them). On the one hand, since B = I'y, (a2) \ Aqg,,
it is a 1-cell of type ZI*. On the other hand, B is also a set of type C14l and as such it can
be decomposed into four 1-cells of type Cl!l since their bases form a chain.
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In [HM94] the definition of 1-cell involves a notion of irreducibility which seems to
depends on the ambient language L (see p. 119-120). The definition of 1-cell here defined
has a similar version but with respect to the minimal language common to all C-minimal
structures, namely Lo = {C'}. To get tider definitions of 1-cell one can modify definition
letting enrich the language L¢ in the automorphism group Autr, of the C-structures
considered. Nevertheless, if no assumption whatsoever is made about this enriched lan-
guage we may have problems concerning uniformity (see example [24). We give a very
basic example of how to get tider notions of cells.

Example 18. Suppose L contains a predicate D which is interpreted in M as a cone.
Suppose furthermore the automorphism group we look at in definition [T5]is defined with
respect to the language Lo = {C, D}. Consider a set B = A; U Ao U A3 of type L'[[)S] such
that D C Ag as in the figure below. Let A = {min(A;), min(Ag), min(A3)}. Then min(Az)
is an orbit of Autr,(M[A]), so B can be decomposed into two 1-cells, B; = A; U A3 and
By = Ag. In contrast, B is a 1-cell if we take Ly = {C'}.

All 1-cells are in particular disjoint unions of Swiss cheeses, but given a 1-cell of a
specified type we can recover the elements defining the cell (which is not always the case
with a Swiss cheese). This is the content of the following lemma.

Lemma 19. Let D be a 1-cell of type ZI"). Then there is only one element in ZI" satisfying
all properties of definition |15 for D.

Proof: Suppose towards a contradiction there are two different elements {Hq, ..., H,}
and {K1,...,K,} in Z ") satisfying all properties in definition [15for D. We split in cases
depending on the value of Z.

e Case Z = M: In this case, condition (a) already implies {H1, ..., H,} = {K1, ..., K, }.
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e Case Z = C: By assumption, there is 1 <7 < r such that H; # K forall 1 < j <r.
Be renumbering we may assume i = 1. By condition (a) and renumbering if necessary, we
may assume that H; N Ky # (. Thus, either H; C K7 or K1 C Hy. Respectively for each
case, thereis 1 < ¢ < r such that H;NK; # 0 or K;NH; # (. Notice that H;NH; = () for all
0 < i < 7 <r by condition (b). Suppose without loss of generality the former happens and
by renumbering that i = 2. Let A := {min(H;) : 1 <i<r}, B:={min(K;):1<i<r}
and ki, ka be the positive integers from condition (c) respectively for {Hi,..., H,} and
{Ki,...,K,}. Notice that condition (a) implies that every element in A is comparable to
an element of B and viceversa. Since A is an antichain, Hy C K;. Therefore, given that
min(K;) < min(H;) and min(K;) < min(Hs), there must be an element a € A such that
a < b for some b € B, otherwise we contradict the fact that both sets of cones have r
elements. We split in two cases. Suppose first that min(H;) # min(Hz). In this case,
since B is an antichain we have that C(a, min(H;), min(Hs)), which contradicts condition
(d). So suppose that min(H;) = min(Hz). This implies that k1 > 1, therefore there are
i,j € {3,...,n}, i # j such that min(H;) = min(H;) = a and H; = I'y(b). Hence, there
is b/ € B such that inf(b,b’) = a. Since A is an antichain, this implies C'(min(K3), b, b")
which contradicts again condition (d).

e Case Z = Lo: As before let A := {min(H;) : 1 <i <r}and B := {min(K;) : 1 <
i < r}. Asin the previous case, we may assume Hy; C Kj, Hy C K and that thereisa € A
such that a < b for some b € B. Here by condition (b) we already have that min(H;) #
min(Hs) and therefore since A is an antichain we have that C(a, min(Hp), min(H;)), which
contradicts condition (c) (of III).

e Case Z = L, (n > 0): Take A and B as before. Notice that if A = B, condition
(b) already implies the result. So suppose for a contraction that A # B. By (a) and
possibly renumbering we may suppose that min(H;) < min(K;) and Ky C H;. But then,
given that n > 0, there is at least one cone at min(K;) which is not contained in K; but
contained in H7. Therefore there must be some 1 < ¢ < r such that K; contains that cone,
but then its base will be comparable with min(K) which contradicts condition (b).

e Case Z=1: Let I;\ A, = Hyand T, \ A, = K, forall 1 <i <r, A:= {min(T}) :
1<i<r}, B:={min(I}) : 1 <4 <r} and kq, ks be the positive integers from condition
(c) respectively for {Hy, ..., H.} and {K1, ..., K, }. As before, we may assume Hy; N K; # ()
and Hy # K;. Therefore min(I'1) and min(I"}) are comparable. We split in two cases.
Suppose first that min(I';) = min(T"}). Without loss of generality suppose that there is
x € Hi \ K1, so by condition (a) there is j # 1 such that H; N K; # (. Hence, min(I'})
and min(F;-) are comparable, which since B is an antichain implies they are equal. By (d),
K1 N Kj =0, but this implies that either I or I'; does not intersect I'1, a contradiction.
So suppose min(I';) # min(I"}). Note that conditions (b), (¢) and (e) imply that both
Ui—; i and UJ;_; I'; are 1-cells of type C [ so a similar argument as in case Z = C applies
here. [J

To define n-cells we need to provide topologies for all Z[") where Z is one of M, T,C,T
and L, for n < w. Given a basis B = {U; : i € I} for a topology in Z (= Z!M), the
topology on Z!"l for r > 1 is given by the following basis: for (i1, ...,%,) € I", a basic open
set of ZI"l is a set of the form {{a;,...,a; } : aj; € Ui;,1 < j <r} (allowing here i; =i
for j # j'). By lemma 2.1 in [HMO94], if the topology on Z has a uniformly definable
subbasis, then for any positive integer r the topology on Z[") has a uniformly definable
subbasis. Therefore we are left with the definitions of topologies on M, T,C,Z and L,, for
n < w. On M, as previously stated, we take the set of cones as a uniformly definable basis
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for its topology. For the rest we take what could be called interval topologies. For I' € C
and A € L a subbasic open of T is defined by

(LA )p:={zeT:zeT\ A}

Notice that min(I") does not belong to (I', A) by the definition of a cone. Since 0-level
sets and points in T are interdefinable we take the topology in on Ly to be the induced
topology on T, that is,

(T,A)z, :=={x € Lo :min(z) € (I',A)r}

In both cases, subbasic open sets are uniformly definable. A subbasic open for the topolo-
gies on the set of cones C and the n-level sets for 0 < n < w corresponds to

(A ) e :={x€C:2 CT'\ A},

(C,A)z, i={z e Ly,:x CT\ A}

Notice that for a cone D it is not enough that min(D) € (T, A)p to have that D € (I, A)¢,
since it could be the case that min(D) € (I';A) but A C D. The same happens with
n-level sets for n > 0. Finally, the topology in Z is the topology induced by the product
topology in T2, that is, a subbasic open corresponds to

(Fl,Al,Fg,Ag) = {I cl: lp(]) S (Fl,Al)T,’Fp(I) S (FQ,AQ)T)},

where Ip(I) is the left end-point of I and rp(I) is the right end-point of I. We are now
ready to define n-cells.

Definition 20. Let Y C M™ be a definable set, n > 1 and 7 : M™ — M" ! be the

projection of M™ onto the first n — 1 coordinates. Y is an n-cell of type (ng, ceey ZLT"]),
where Z; ranges over M,C,Z and L,, (m < w) and r; is a positive integer for all 1 < i < n,
if 7(Y') is an (n — 1)-cell of type (Zyl], ey Zgﬁ;l]) and either:

1. Zy=Mand Y = {(y,2) € n(Y) x M : z € f(y)}, where f : n(Y) — M=l is a
definable continuous function and f(y) is a 1-cell of type M for all y € 7 (Y).

22Y ={(y,2) e n(Y)x M : z € Uf(y)}, where f : n(Y) — ZI is a definable
continuous function, Z, ranges over C, Z and L,, (m < w) and |J f(y) 1-cell of type
2 for all yemn(Y).

Y is an almost n-cell if the continuity condition is dropped. A decomposition (resp.
an almost decomposition) of a definable set D C M™ is a finite set of disjoint n-cells (resp.
almost n-cells) {Y1,...,Y;,} such that D = |J2; Y;. A cell is an n-cell for some positive
integer n.

It is easy to show by induction that M™ is a cell and @ € M" are a cells for all
1 < n < w. The following shows how to uniformly decompose a definable subset of M
into finitely many 1-cells.

Proposition 21 (Uniform 1-cell decomposition). Let ¢(x,y) be an L-formula with |z| = 1.
There is a finite definable partition P of MY such that for each A € P there are L-formulas
Vi (x,y), . .. ,wﬁA(x,y) satisfying that whenever o € A, {{*(M, a),...,v,b;;‘A(M, a)} is a
1-cell decomposition of ¢(M,«). Moreover, each formula Q/Jf(a:,y) defines the same type
of 1-cell for each a € A.
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Proof: The proof mimics ideas from proposition 3.7 in [Dell1]. For aw € MY let

Ti(a) == {a € T(M) : 38(6(8,0) Aa < B) A IF(=0(B,0) Aa < H)}.
Note that 77 () = 0 if and only if (M, o) = M or ¢(M,a) = 0. Let Ag := {a € MW :

Ti(a) = 0}. Since M is a cone (we treat M as a cone at —o0), setting ng, := 1 and
Yl(z,y) as ¢(z,y) we already have the result for Ag. Take o € MW\ Ay (so T1(a) # 0)
and let D, := ¢(M,«). From now on, to ease notation we omit reference to « if no

ambiguity arises having D = D,,, T1 = T1(«), etc. Consider the sets

X := {ae€T(M):aisa supremum of a branch in 77 };
Y := {a € T} : a branches in T7 };

Claim 1: There is a positive integer N such that for all a € MY \ Ap the cardinality
of X, UY, is less than N.

Proof of the claim: By lemma |§| there is n such that for all a € MW ¢(M, ) is
equivalent to a disjoint union of at most n Swiss cheeses each with at most n holes. For
o € MW\ Ag let B, be the set of bases of cones and 0-level sets in a given Swiss cheese
presentation of ¢(M, a). Let Th(a) := cl<(By). One can easily check that independently
of By, Ti(a) € Tp(ar). This implies in particular that 77 («) has finitely many branches
(less than n?) for all & € MY\ Ay and thus finitely many branching points. Consequently,
the cardinality of both X, and Y, is uniformly bounded, which proves the claim.

We define for a € 71 \ (X UY) an element ¢, = inf{z € X UY : a < z}, which is
well-defined by the claim. Consider now the sets:

Wi={aeTi\(XUY):Ay(ca) N D #DANAg(ca) NM\D #0)}

Vi={aeTh\ (XUY UW) : ais the left-ending point of an interval of T}
which is maximal for being contained in {a € T7 \ (X UY UW) : Ay(c,) C
D or Ay(cq) C M\ D}}.

X, Y, W and V also depend on « and are uniformly definable. To stress this dependence
or clarify an ambiguity we add indices and denote them by X, Y,, W, and Vj, if needed.

Claim 2: There is a positive integer N such that for all a € MY \ Ap the cardinality
of Fi, = X, UY,UW, UV, is less than N.

Proof of the claim: By the claim 1, the cardinality of both X, and Y, is uniformly
bounded. The cardinalities of W, and V, are uniformly bounded by lemmas [12] and [I3]
respectively. This completes claim 2.

For each o € MV \ Ag we consider F, = X, UY, UW, UV, as a finite tree structure
with predicates for X, Y, W and V. By claim 2, there are finitely many non-isomorphic
such tree structures. Hence, there is a definable finite partition P of MY\ Ay such that
a and o/ are in the same element of P if and only if F,, & F,,,. Fix A € P and o € A. Let
r be the root of F, and for a,b € F, such that a < b, let a™(b) be the successor of a in
the interval (a,b] in F,. Both r and a™(b) exist since F, is finite. Consider
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AR A ﬂD'GEX}'
o Zy:={(Aa\ Upex.actLa (b))mDZGEY};

o 73 :{A (ca)ND:ae W}

o Zy:={Ay(cg)ND:aeV};

o Zs = {(Ta(b) \ Agrry) N D :a € Y,b € X such that a < b};
o Zs:={(Talca) \ Ag+)ND :a W}

o Z7:={(Talca) \Ay+)ND:a eV}

e If T(M) has no root, then Zg = {(M \ A,) N D}.

Elements in 77 to Z4 are either cones or n-level sets and elements in Z5 to Zg are
intervals. That D = U§:1 U Z; can be checked by cases and is left to the reader. We now
decompose into 1-cells. We first deal with the problem of fixing their type of cell. For each
a € F let n, be the number of cones at a contained in D and m, the number of cones
at a contained in M \ D. By lemma [L1] u there is a positive integer N such that for all
a e MW \ Ap and all a € F, either n, < N or m, < N. We associate to each z € UZ 1 Z
a pair (n,,m,) € (N U {oo0})? where for a the base of z, n, is the number of cones at a
contained in z and m, is the number of cones at a contained in M \ z. Analogously, for
an interval z € Ule Z4iy1 we let [, to be the number of intervals in Uf 1 Zi+1 having the
same left-ending point as z. Let ht(F,) = h and for ¢ < h let F, (i) be the set of nodes
in F, of height i. Clearly F,(i) is an antichain for each ¢ < h. Consider the following
definable sets:

e Let (n,m) € (N U {c0})? be such that n = oo or (n,m) = (0,0). For i < h, let
4
B(n,m,i) ={a € F,(i) : @ = min(z), (ny,m,) = (n,m),z € U Zi}.

Since B(n,m, ) is an antichain, let Oy, ..., Oy be the orbits of Autr,(M[B(n,m,i)])
(notice that & is uniformly bounded by |X|). Set vymij(M, ) as the union of all
z € Uty Z; for which (n,,m,) = (n,m), ht(min(z)) = i and min(z) € O; for
j < k. Let s be the number of such elements. By construction, if non-empty, the
set Vpmij (M, a) is a 1-cell of type Cq[f;].

e Let (n,m) € (N U{c0})? be such that 0 < n < N. For i < h, let

4
B(n,m,i) = {a € F,(i) : @ = min(z), (n;,m.) = (n,m),z € U Zi}
i=1
A before, let Oy, ..., Oy, be the orbits of Autr,(M[B(n,m,1)]). Set Tpmi;j(M, o) as the
union of all z € (J}_; Z; for which (n,,m.) = (n,m), ht(min(z)) = i, min(z) € O,
for j < k. Let s be the number of such elements. By construction, if non-empty, the
set Tumij (M, ) is a 1-cell of type Clsl,
e For i < h,and Il < N let

4
B(l,i) = {a € F,(7) : a is the left-endpoint of an element z € U Zpiv1,l =1,}
i=1
Let Oy, ...,Oy be the orbits of Autr,(M[B(l,4)]). Set 7,;(M, ) as the union of all
z € Ui, Z; for which (n,, m,) = (n,m), ht(min(z)) = 4, min(z) € O; for j < k. Let
s be the number of such elements. By construction, if non-empty, the set &; (M, «)

s]

is a 1-cell of type Z1!.



2.1 CELLS 14

Let {0;(z,y) : 0 < i < K4} be an enumeration of all formulas 7,mi;(z,v), Vnmij(x,y)
and &;(z,y) for (n,m) € S, and k,I < N x | X|. Then refine P letting «, @’ belong in the
same element of P if and only if F, = F,, and 6;(M,«) # 0 if and only if 6;(M, o) # 0
for all 0 < i < K4. Now, for A € P, let {¢)(z,y)# : 0 < i < na} be an enumeration of all
formulas 0;(z,y) such that 0;(M,a) # (. It is clear that

8

L_j WM, 0) = JJZi = o(M, ).

i=1
U

Remark 22. It is worth noting that the type of all 1-cells in the above proof correspond
only to n-level sets, cones and intervals without having 1-cells of type MU (points were
treated as 0-level sets). If densityis assumed, by lemma [14] we can further suppose that
1-cells of type ZU"l for Z either C,Z or L, (n < w) appearing in the 1-cell decomposition
of a definable set are always infinite, letting finite 1-cells to be only of type M. This
is a simple application of the elimination of the quantifier 3°° (property 2 in lemma .
Without the elimination of 3°° we could have a C-minimal structure as in the figure below,
having a family of arbirary large finite 0-level sets, which implies they could not be defined
in a cell decomposition as cells of type M for some positive integer r.

*.n
[
| s
® . ‘ .
* ° (I 4 s
L. \//// . '
[ Q, Vs s \/////
L. v » VL \/////
Y .
L \I/ el &
\ & -
\ 7 lr -
\/ _

For ¢(x,y) a formula with |x| = 1, the set of discrete points in ¢(M,«) is uniformly
definable for all o« € M and by C-minimality and density always finite. Then one can
provide a cell decomposition of ¢(M,a) where all 1-cells of type ZI"! with Z # M contain
at least one cone, hence there are infinite.

In order to obtain a uniform cell decomposition we gave up in some cases intuition.
For instance, an interval can have different decomposition depending on the type of the
parameters. We present an example in valued groups that shows this.

Example 23. Let Lg = {+, div, 0} be the language of valued groups where div is a binary
predicate interpreted as
div(z,y) < v(z) < v(y).

Consider the following L-formula

P(x,y1,y2) := ~div(z, y1) A ~div(yz, z).

(A) Let K be an algebraically closed valued field and M its reduct to the language
L¢, which is also C-minimal. Here every branch is isomorphic to the value group (which is
dense as an order) and we identify points in any branch with points in v(K). Let a denote
a tuple (a1,a2) and D := ¢(M,«). Proposition [21] gives us a partition P = {Ag, A1},
where Ag := {a € M?:v(a1) > v(ag)} and Ay := M?\ Ag. Clearly, D = () if and only if
a € Ay. For a € Ay, F, is linearly ordered, X = {v(a2)} (where we regard all values like
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v(ag) as elements in the branch of 0), Y, = () given that there are no branching points,
W = and V,, = {v(a1)}. The only element in [J$_; Z; which is not empty is the element
in Z7 that corresponds to the interval I';,,)(v(a2)) \ Ay(ay). This shows that ¢(M, ) is

already a 1-cell of type ZI! for all v € A;.

(B) Consider now M’ be the additive group of the 2-adic field in the language Lg. M’
is C-minimal. Again, every branch can be identified with the value group but in contrast
here the value group is Z which is discrete. Moreover we have that bn(a) = 2 for all
aecT. Proposition gives us the same partition P = {Ap, A1} but with a different 1-cell
decomposition. Given that the order is discrete, X, = {v(ag) —1}. Therefore, for a € Ay,
»(M, «) is decomposed into the cone at v(ag)—1 which does not contain v(asg) (remember
bn(a) = 2, so this is well-defined) and the interval I';,)(v(a2)) \ Ayas)—1- This shows
¢(M, ) is not a 1-cell in this case.

M/
v(ae)
e
v(ag) — 11
\. v(ay)
v(a)
] Do -1(v(a2))
D Fv(al)(v(a2)) \ Av(as) D Fv(al)(U(QZ)) \Av(az)fl

Next example exhibits a potential problem that might arise by letting Ly be any
sublanguage of the ambient language in the definition of 1-cells (def. .

Example 24. Let M be a dense pure C-minimal structure, i.e., in the language Lo := {C'}.
Let X be an infinite discrete subset of M. By C-minimality, X is not definable. Let M’
be the expansion of M adding constants for each element of X, i.e., we consider M in the
language L = Lo(X). Since C-minimality is preserved by adding constants, M’ is also
C-minimal. Consider for y = (y1, y2) the formula

d(r,y) = (x=nVr=y) Ay # v

Suppose 1-cells are defined with respect to the language L instead of Ly in definition
[[5] and in addition, towards a contradiction, that proposition [21] is true for this notion
of 1-cell. Then there is an L-definable finite partition P of M? such that for each
A € P there are L-formulas wf(x,y),...,w;fA(x,y) satisfying that whenever a@ € A,
{p (M, ), .. ,@Dg‘A(M, a)} is a decomposition of ¢(M, ) and each formula 1/1]‘4($, y) de-
fines the same type of 1-cell for each o € A. In this case, there are only two possible
decompositions for ¢(M, a) namely, either the union of two 1-cells of type M or a 1-cell
of type M. For o = (a1, az), if the decomposition of ¢(M, @) is the union of two 1-cells
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then either a1 or ay must lie in X since this is the only case where they can be in differ-
ent orbits of Auty([{a1,2}]). Let A € P be the subset of M? such that for all o € A
the decomposition of ¢(M,«) is the union of two 1-cells. For 8 € M \ X, we have that
{a1 € M : (an,B) € A} = X, which contradicts the fact that X is not definable.

Proposition [21] gives the following rough version of cell decomposition:
Proposition 25. FEvery definable set D C M™ has an almost cell decomposition.

Proof: The proof goes by induction on n. The case n = 1 corresponds to an instance of
proposition . Let 7 be the projection onto the first n — 1 coordinates. Let ¢(z,y) be the
formula defining D where |z| = 1 and z corresponds to the variable which is dropped by the
projection 7. For a € w(D) we let D, := {8 € M : M = ¢(8,«)}. Then by proposition
there is a definable finite partition P of 7(D) such that for each A € P, D, uniformly
decomposes into finitely many 1-cells, say ¥i'(z,v),...,¥{*(z,y). By induction, we may
assume each A € P is already an (n — 1)-cell. Suppose that 1{*(x,y) defines a 1-cell of
type ZI"l. Then we have a definable function h* : A — ZU'l defined by hi*(a) = (M, a).
Doing the same for each ¢{4 and each A € P we get functions hf‘ of the desired form. The
sets YA = {(a, B) € m(A) x M : B € h*(a)} form a disjoint union of almost n-cells whose
union is D. O

Corollary 26. Let X C M™ be a definable subset and X1, ..., X5 definable subsets of X.
Then X can be partitioned into finitely many almost n-cells Y1, ...,Y,, of M™ respecting
each X;, i.e, if X;NY; # 0 then Y; C X;.

Proof: Apply the previous result to each X N ﬂXf @ Where § €° 2 and X}!:= X; and
XP =M\ X;forall1<i<s. O

2.2 Definable functions and “cellwise” continuity

Through this section M will be a dense C-minimal L-structure. We aim to prove the
following theorem (all terms to be defined):

Theorem 27 (Haskell and Macpherson). Let Z be one of M,T,C,T or L,, forn < w.
Let r be a positive integer and f : M — ZI') be a definable partial function. Then there
is a decomposition of dom(f) into finitely many cells on which f is continuous. On each
infinite cell, f is reducible to a family of definable functions each of which is either a local
multi-isomorphism or locally constant.

This is an analogous version of the o-minimal monotonicity theorem (see [PS86), [ KPS86])
for C-minimal structures. To prove it one has to deal with the case r = 1 first and then
generalise it to multi-functions. We start with some definitions.

Definition 28. Let M and N be two C-structures. A partial function f: M — N is a
C-isomorphism if it is injective and preserves the C-relation. It is a local C'-isomorphism
if for every a € dom(f) there is a cone D C M such that « € D C dom(f) and f | D is a
C-isomorphism.

Proposition 29. [Haskell-Macpherson] Let f : M — T(M) be a definable partial function.
Then, dom(f) can be written as a definable disjoint union of sets F'U I U K where F is
finite, f is a local C'-isomorphism on I and f is locally constant on K.
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Proof: We present only a sketch of the proof. Two cases are distinguished. First,
one supposes that the image of the function is an antichain (this covers already the case
im(f) € M). The key idea here is to consider for each o € dom(f) a uniformly definable
partial function ¢, with domain Br(a) and range Br(f(«)) as follows:

dala) = b if and only if f(Ag(a)) C Ap(f(@)).

One shows that for a fixed a € dom(f) the function ¢, is well-defined in a cofinite
subset of {inf(«, ) : B € dom(f)}. Once this is proved, by density, the set

D :={«a € dom(f) : {inf(c, B) : § € dom(f)} is cofinal in o}

is cofinite, so one may assume dom(f) = D. Then, by the monotonicity theorem for
o-minimal structures (remember by lemma |8 Br(«) is o-minimal), for each function ¢,
we have that ¢, is either monotonically increasing, monotonically decreasing or constant
on a cofinal segment of a, so one partitions dom(f) into subsets

o P ={a € dom(f): ¢o is monotonically increasing on a final segment of Br(«a)}
e R={a e dom(f): ¢, is monotonically decreasing on a final segment of Br(«)}

o K ={a € dom(f): ¢, is constant on a final segment of a}.

One is able to show then that R is finite, f is a local C-isomorphism on a cofinite
subset of P and locally constant on a cofinite subset of K. To deal with the general case,
one partitions dom(f) into the following sets (for a,b € T'(M) we use a || b to say that a
and b are incomparable):

o J; ={a € dom(f): thereis a cone D containing a s.t. V3 € D\ {a}(f(5) > f(a)};
e J; ={a € dom(f): there is a cone D containing a s.t. V5 € D\ {a}(f(8) < f(a))};
o J3 ={a € dom(f): there is a cone D containing a s.t. V8 € D\ {a}(f(8) || f(a)};
o Jy={a € dom(f): thereis a cone D containing a s.t. V3 € D\ {a}(f(5) = f(a)};

[ ] J5 :dom(f)\J1 UJ2 UJ3UJ4.

By density, Js is finite. The proof is completed showing that J; and Jy are finite
(an argument by contradiction building sequences as in lemma and that f is a local
C-isomorphism on J3 (notice that f is locally constant by definition on Jy). O

We give a more detailed proof of the fact that every definable function is continuous
almost everywhere.

Lemma 30. Let f: M — Z for Z either M, T,C,Z or L, forn < w be a definable partial
function. Then f is continuous on a cofinite subset of dom(f).

Proof: The set A := {a € dom(f) : f is not continuous at a} is definable in all cases
given that all topologies have a uniformly definable subbasis. Suppose towards a contra-
diction that A is infinite. Then it contains a cone E. We split the proof by cases depending
on Z.

Case Z = M: By proposition , dom(f) decomposes into sets F'U I U K where
F' is finite, f is a local C-isomorphism on I and locally constant on K. Being locally
constant already implies continuity, so without loss of generality may assume that f is a
C-isomorphism on E. Therefore f(F) is infinite, hence contains a cone which contradicts
that £ C A.
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Case Z = T: Again by proposition we are reduce to the case where f is a C-
isomorphism on E. Take a € E. For a € E, given that £ C A, there is an open set
(T, A)7 containing f(a) such that for all cones H containing o we have that f(H)
(I, A)r. In particular, for F, given that f [ E is a C-isomorphism, this implies there
is f € FE such that f(5) ¢ (I';A)r hence f(8) € A. Given that f(E) is an antichain,
inf(min(A), f(«)) # f(«), since otherwise f(a) < f(8). Thus there is b > f(«) such that
Ay C (T, A). By density, there is also some v € E such that C (3, «,~). Then the open set

(T'A) 7 := (Ting(f(y), 1)) (F (@), Ap)T

contains f(a) and is contained in (I',A), therefore cannot contain f(H) for any cone H
containing a. This is true in particular, for the cone T'i,¢(a,4) (@) C E. Hence there is §
such that f(d) € Ap, but then f(a) < b < f(J) which contradicts the fact that f(F) is an

antichain.

Cases Z = C and Z = L,: Functions from M to Ly are in bijection with functions
to T', so we may assume that 0 < n < w. We prove in this case that f is locally constant
in a cofinite subset of dom(f), which implies continuity. Let f : M — T be the induced
function defined by f() := min(f(a)). By proposition dom(f) is decomposed into
sets F'U I U K where F' is finite, f is a local C-isomorphism on I and locally constant on
K. Take a € K and let D C K be a cone containing « such that f is constant on D.
Notice that the set of cones contained in K and containing « is totally ordered (and can be
identified with a cofinal subset of Br(c)). Hence by lemmal[9]and strong minimality of the
set of cones at f (), f must be constant on some cone containing «. To finish the proof,
we show [ is empty. For suppose not and let D be a cone on which f is a C-isomorphism.
Consider the following definable set

. D) if Z7=C
o U{z € Amin(fa) \ fla) :a€ D} if Z=L1for 0 <n <w.

In both cases, given that f is a C-isomorphism on D, X is the union of infinitely many
cones having their basis at the antichain f(D) and satisfying for all a € f(D) there is
B e Af(a) \ X (here we use the fact that n # 0). But by the proof of theorem 21} the tree

T(X)={aeT:3pLeXNa<p)ANIBLeM\X ANa<p)},

has finitely many branches, which contradicts the fact that f (D) is an infinite antichain.

Case Z = I: By the definition of the topology on Z, the almost everywhere continuity
of f is reduced here to the case Z = T since it follows by the almost everywhere continuity
of the induced functions f; : M — T and f, : M — T sending an element « respectively
to the left and right end-points of the interval f(«). O

We give an application that will be heavily used:

Lemma 31. Let I be a totally ordered subset of T(M) U {—oo} with no greatest element
and f : M™ — T(M) be a definable partial function with rng(f) C I. Then, for all
a € M™ there are b € I and a basic neighborhood U of o such that for all x € U if f(x)
is defined then f(x) <b.

Proof: The proof goes by induction on n.
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To prove cell decomposition we need to extend the result to multi-functions. We need
first to define what is the corresponding notion of C-isomorphism in this cases, which
leads to the concept of multi-isomorphism. Recall that for a function f : M — ZI'l and
D C M, f(D) denotes U{f(x) : z € D} and we call r the multi-degree of f.

Definition 32. Let M be a C-set and r be a positive integer.

a) A definable partial function f : M — T(M)I' is a strong multi-isomorphism if
S :=im(f) is an antichain and there are cones By,..., B, in M[S] such that:

(i) for all 5 € dom(f) andall 1 <i<r, |f(B)NB;| =1
(ii) for 1 < i < r the map f; : dom(f) — M]S| defined by f;(3) := f(8) N B; is a
C-isomorphism.
b) A partial definable function f : M — T(M)U" is a multi-isomorphism if there are
s < r, a strong multi-isomorphism f : M — T(M)[® with dom(f) = dom(f) and a
definable antichain A of T'(M) such that

flo)={zeA:Tbe fla)b<z)}

c) A partial definable function f: M — Z "] where Z is either C or £,, for n < w is a
multi-isomorphism if:

(i) For all o € dom(f), f(a) is a cell of type Z[']
(ii) The induced function fuin : M — T(M)¥ (for k < r) defined by fuin(a) =
{min(F) : F € f(a)} is a multi-isomorphism.
d) A partial definable function f: M — 7 " is a multi-isomorphism if:
(i) for all & € dom(f), f(a) is a cell of type ZI"!

(ii) the induced functions f; : M — T(M)) and f, : M — T(M)!*?) sending o
respectively to left and right end-points of elements in f(«) satisfy that f, is a
multi-isomorphisms and f; is either constant or a multi-isomorphism.

e) For f: M — ZI"l where Z is any of T(M), C or L, for n < w, we say that f is a
local multi-isomorphism (local strong multi-isomorphism) if for all & € dom(f) there
is a cone D with o € D C dom(f) such that f | D is a multi-isomorphism (resp.
strong multi-isomorphism).

Remark 33. By the definition of T(M), the case f : M — MU is contained in part
(a) of the previous definition given that we can see this function as a function of the
form f : M — T(M)I'} where im(f) is a subset of the set of leaves of T(M) which is
identified with M itself. Moreover notice that M[M] = M. In addition, for r = 1, both
notions of multi-isomorphism and strong multi-isomorphism coincide with the notion of
C-isomorphism. Condition (i) in parts (¢) and (d) are used only to guarantee that the
functions fiin, fi and f, are well defined (it might happen that there is a € dom(f) such
that F1, F» € f(«) satisfy min(F7) = min(F»), so one has to be careful when choosing the
multi-degree of fuin)-

Definition 34. Let Z be one of T'(M),C or L, for n < w. Let r,m and k be positive
integers and f : M™ — ZI"l be a definable partial function. We say that f is reducible to
the family (fi1,..., fx) if and only if for each 1 <i < k,

o fi: M™ — ZI51 is a definable partial function.

e dom(f;) = dom(f).
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[} Zi‘c:l S; =T.
e For every a € dom(f), f(a) = U, fi(a).

The function f is irreducible if there is no non-trivial such reduction of f.

Remark 35. If f is reducible to the family (f1,..., fx) and each f; is reducible to a family
(g}, ...,g;") then f is reducible to the family (g1, ..., g%, .., g, ---, gz*). Notice also that if
f is reducible to the family (fi, ..., fx) and each function f; in the family is continuous at
« then f is continuous at a.

Example 36. Let A = [0,1) N Q ordered with the usual order. Set T} to be the good
tree where all branches are order isomorphic to A and bn(a) = 2 for all @ € Ty (it is
not difficult to show the existence of such object), and T, to be the good tree with 3
elements (two incomparable elements above the roor). Let Mj, My be their corresponding
induced C-sets. Let M be the C-set My x Ms x M, i.e., elements in M are triples
(a,b,c) € My x My x My and where the point a can be identified with its corresponding
leaf in the first copy of T} and (a,b) with the corresponding leaf in T} x T5. For every
a € M; we denote by b and b the 2 nodes in T'(M) which are successors of a (see the
figure).

((l,b, (l) (a7b7 C)

a

M

/
\ 7 M- \ Y/ /
oMy Mp

S}
of
a

M
M, !

Consider the function f : M — T!? mapping (a,b,c) to {b$,b5}. We show that f is a
local multi-isomorphism but not a local strong multi-isomorphism. Notice first that im(f)
is an antichain that corresponds to M; X Ms, i.e. to the leaves of T7 x T5. Suppose for
a contradiction f is a local strong multi-isomorphism. Let a = (a,b,¢) € M and D be
a cone containing it. If there where cones Bj and By satisfying conditions (i) — (44) in
part (a) of definition [32f then |f(a) N B;| =1 for all ¢ = 1,2. By the definition of 75 this
implies that | B;| = 1 which contradicts the fact that f | D is a C-isomorphism since D is a
dense cone. To show f is a local multi-isomorphism consider the function f : M — T(M)
defined by f(a) = inf(f(a)). Let D be the cone Loy () and A := f(D). The set A is a
definable antichain since it is the set of all elements in 7'(M) with a predecessor. It is easy
to see that f((a,b,¢)) = ¢ and since D = M; = im(f), we have that f is a local strong
multi-isomorphism. Moreover f(a) = {x € A : z > b for some b € f(a)}. It is worthy
to notice that f is an irreducible function (this is mainly because the elements {b, b }
have the same imaginary type over {c}, hence cannot be separated by a definable partial
function).
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Lemma 37. Let f : M — T(M)I") and g : M — T(M)P be two partial definable functions
such that s < r, dom(f) = dom(g) and for all & € dom(f) we have that f(c) is an
antichain and for all b € f(a) there is a € g(a) such that a < b. Then if g is a local
multi-isomorphism so is f.

Proof: Let a € dom(f). By definition of local multi-isomorphism, there is a cone D
such that « € D C dom(g) and ¢ [ D is a multi-isomorphism. This implies that there are
a positive integer s’ < s, a strong multi-isomorphism § : D — T(M )[s/] and a definable
antichain Ay of T'(M) such that g(8) = {x € Ao : b € §(B)(b < z)}. Consider the
following definable subset of T'(M)

A:={ze f(D):3beg(D)(b<uz)}

We claim that § and A witness that f [ D is a multi-isomorphism. We first show that
A is in fact an antichain. For suppose there are y, z € A such that and x < y. Let o, 8 € D
such that z € f(a) and y € f(5). By assumption there are a € g(«a) and b € g(5) such
that ¢ < z and b < y. Since § is a strong multi-isomorphism there are cones By, ..., By
in M[§(D)] such that the functions g; : D — M[§(D)] defined by g;(5) := §(8) N B; for
1 < i < ¢ are C-isomorphisms. Moreover, there are ¢ € §(a) and d € §(5) such that
c<a<zandd<b<y. Since ¢,d < y they are comparable, but §(D) is an antichain,
hence ¢ = d. Since the cones By, ..., By are disjoint, there is a unique i in {1, ..., s’} such
that ¢ € B;. Hence we have that §;(a) = ¢ = d = (). Since §; is injective we must have
that @ = . But then we have a contradiction since by assumption f(«) is an antichain
and x,y € f(a) are comparable. Now that we know that A is an antichain we simply
check that

fla)={zeA:Fbecgla)b<z)} ={r e A:Tce jla)c <)}

which shows that f is a local multi-isomorphism. [J

Lemma 38. Let I C M be a cone and let f : T' — MU be a definable function such that
for some a € T(M)

{inf(v,7) : 3o, B€ T(y € f(a) A2 € f(B)} = {a}.
Then I' \ Xy is finite where

X;:={a€T:3D,,By,..,B; €Cla € D, CT AVS € D, /\(|f(Da) NB;| =1))}.

i=1

Proof: We prove this by induction on s. For s = 1, by proposition 29| we have that
f is either locally constant or a local C-isomorphism on a cofinite subset Xg of I'. This
implies that Xo C X, thus I' \ X is finite. Suppose the lemma is true for all k¥ < s and
all definable functions with multi-degree k. Suppose towards a contradiction that I' \ X
is infinite and let D be an infinite cone contained in I"\ Xy. We spli in two cases.

Suppose for all a € D, there is no v € f(«) such that I';(y) N f(D) is infinite. By
C-minimality this implies there is a cone Dy C D where f is injective. Let D1, Do C Dy
be two disjoint cones. By injectivity we have that such that f(D;) N f(D2) = (. But
by assumption each f(D;) must be infinite which contradicts the strong minimality at a.
Suppose then there are a and v € f(«) such that T'y(y)N f(D) is infinite. Then f~1(T' (7))
is infinite too, so let Dy C D be a cone contained in f~!(Ty(y)). Define f : U — M5~



2.2 DEFINABLE FUNCTIONS AND “CELLWISE” CONTINUITY 22

by f(a) = f(a) N Ag(7y), which is well defined by the choice of Dy. By induction, there

are finitely many elements in Dy \ Xf- For a € Dy \ Xf let D, and By, ..., Bs_1 such that
(= F(B) : & > a}N By| = 1). Setting By = 'y(7), since Dy C Dy, we have that
iz1({z € f(B) : x > a} N B;| = 1), which shows a € X, a contradiction. [J

Lemma 39. Let f : M — ZUl be a definable partial function where Z is either M, T
or Lo. If f is a local multi-isomorphism, then f is continuous on a cofinite subset of its
domain.

Proof: The set A := {a € dom(f) : f is not continuous at a} is definable in all cases
given that all topologies have a uniformly definable subbasis. Suppose towards a contra-
diction that A is infinite. Then it contains a cone E. We split in cases depending on the
value of Z.

Case Z = M: Since f is a local multi-isomorphism, without loss of generality we may
assume that f is a multi-isomorphism on F. This implies that for 1 < § < r there are
cones B; such that |f(8) N B;| =1 for all § € E and the function f; : E — B; defined
by f(8) N B; is a C-isomorphism. Given that the cones Bj, ..., B, are pairwise disjoint,
f(E) C By X -+ X B, is open, which contradicts that £ C A.

Case Z = T or Z = Ly: The case Z = Ly is reduced to the case of Z7 = T
by the definition of its topology. Again, since f is a local multi-isomorphism, without
loss of generality we may assume that f is a multi-isomorphism on FE. This implies
there is a strong multi-isomorphism f : M — Tl! and a definable antichain S such that
fla) ={z € S : 3 e fla)b < z)} for all @ € E. By definition of strong multi-
isomorphism there are cones By, ..., B, such that for each 1 < i < n, |f(a) N B;| = 1
for all @ € E and the function f; : E — B; defined by f(a)N B; is a C-isomorphism.
Therefore fi(E),..., fs(E) are cones. For o € E take (Aq,...,A,) be such that for each
1 <i < 7 there is a € f(a) such that a < min(A;). Consider the open set of T given
by U = {{a1,...,ar} : a; € (B}, A;)r, min(B;) < min(A;)}. This open set contains a. We
show that f(E) C U. Let 8 € E. By assumption f(3) = {z : 3b € f(B)(b < z)}, so given
that f(E) C By x --- x B, we have that for all b € f(3) there is some 1 < j < s such
that b € B;. Moreover given that S is an antichain, b ¢ A; for all 1 <14 < r, therefore for
each b € f(f) there is one open set (Bj,A;) containing b. This contradicts that f is not
continuous at o. [J

We are now ready to prove theorem [27}

Proof of theorem : Let f : M — Z[") be a partial definable function. The proof
goes by induction on r and the case r = 1 corresponds to theorem [29| and lemma It is
worthy to notice that if Y C dom(f) is a 1-cell such that f | Y is reducible to a family of
functions (fi, ..., fx), then on Y the result follows by the induction hypothesis and remark
since the multi-degree of each f; is strictly less than r. As usual, we split in cases
depending on the value of Z:

Case Z = M: For each a € dom(f), let T, be T[f(«)] (the closure of f(«) under
inf, which is in particular finite) and L, be the set of leaves of Ty, \ f(«). Since there are
finitely many isomorphism types of trees Ty, say 11, ..., Tm, we have that

dom(f) = G X;  where X; := {a € dom(f) : T,, = T;}.
i=1
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Since each X is definable, by theorem 21], X; decomposes into finitely many 1-cells. There-
fore, dom( f) decomposes into finitely many 1-cells such that T;, = T for all o, § belonging
to the same 1-cell. Let Y be such a cell and let « € Y. Since |Ly| = |Lg| for all B € Y,
we let ro = |Lo|. We may assume that for all v € f(a) there is a € L, such that a <y
(see figure 1)), for otherwise f | Y can be reduced to the family (f1, f2) where

fila):= {z € f(a):Ja€ Lo(a < x)}
fola) = f(a)\ fi(a)

T, To
Q » L] L4 « » 2 L
\ / \ / \ / / ,’
\ / \ / \ / 4 ,
\ 7 \ \ 7 4 ,
¥ a1 ¥ a2 ¥ a7 /
N N / ;
N 4 N/ ,
\\ // L4 /
N N
[ [ ]
Lo = {a1, a2} Lo ={a1}

Figure 1: Suppose f: M — (Iff). In the left-side example, for every = € f(«) there is

a € Lo such that a < 7. In the right-side example there is no a € L, such that a < -, hence
f will be reducible in this case.

and the result follows by induction. Notice that the fact that T,, =T for all a, B € Y
implies that fi, fo are well-defined functions. We may suppose furthermore that for all
a €Y and all a € L,, the cardinality of the set {x € f(a) : a < x} is the same, since if
there were at least two such different cardinalities, say s1 and ss, f [ Y would again be
reducible to (f1, f2) where

fila) = {x € f(a):Ta € Ly|(a <) =51}
fola) == f(a)\ fi(a)

and the result follows by induction (see figure .

\
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Figure 2: In the left-side example, we have different cardinalities for the elements above
a € L, so it is reducible. In the right-side example there they are all the same.

Now define the function g : Y — T(M)l! by g(«a) := L. Since r¢ < r, by induction Y
decomposes into finitely many 1-cells such that on each infinite cell W, g [ W is reducible
to a family (g1, ..., g;) where each g; is either locally constant or a local multi-isomorphism.
If I > 1, then we can reduce f | W to the family (f1,..., f;) where fi(a) = {z € f(a) :
Jda € gi(a)(a < x)}, and the result follows by induction. If [ = 1, the remaining cases
correspond to whether g [ W is locally constant or a local multi-isomorphism:

e Case 1) Suppose that g [ W is a local multi-isomorphism. We show this is im-
possible, i.e., we show that W is empty. Otherwise, let g € W and D be a cone
containing «g such that g [ D is a multi-isomorphism. Thus, by definition, there are
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k < rg, a strong multi-isomorphism ¢ : D — T(M )%l and a definable antichain A
such that g(B) = {z € A : 3b € §(B)(b < x)} for all § € D. By definition of strong
multi-isomorphism, the set S = §(D) is an antichain and there exist cones By, ..., By in
the C-structure M[S] such that for 1 < i < k the function §; : D — B; defined by
9i:(B8) = g(B) N B; is a C-isomorphism. In particular, since D is infinite this implies that
g(D) is infinite.

Claim 40. For each b € S the set {x € f(D) :b <z} is finite.

We prove in particular that for b € S there is a € D such that {x € f(D):b <z} =
{z € f(a) : b < z}. Since f(«) is finite this shows the claim. For b € S = §(D), let
a € D such that b € g(a). Let B; be such that b € B;, so g;(a) = b for some 1 < i < k.
We show that « satisfies what we want. The right-to-left inclusion is trivial. For the
converse, let z € f(8) and b < z. Then there is a € g(5) such that a« < z and since
g(B) = {x € A:3c e g(B)(b < x}, there is ¢ € S such that ¢ < a < z. Since b,c < x
they are comparable but they both lie in S which is an antichain, which implies b = c.
Therefore g;(a) = b = ¢ = §;(f), and since g; is injective, we have 8 = «, which finishes
the claim.

But since we have that Jyeg{z € f(D) : b <z} = f(D), f(D) is an infinite definable
subset of M which by the density assumption does not contain a cone. This contradicts
C-minimality and completes case 1.

e Case 2) Suppose that g [ W is locally constant. Consider the formula

Y(a,a) ={aeW: a€LyN3Dyg4,B1,...,Bs€Cla€ Dy CW A
VB € Do Ni=i(Hz € f(B) : 2 > a} N Bi| =1))}.

Claim 41. Let Wi :={a € W : ¢(a,a) holds for all a € Lo}. Then W\W7 is finite.

Proof: Suppose not and let D C W\W; be a cone and o € D. By the choice of W, we
may assume that L, = Lg for all 8 € D. Moreover, since L, is finite, we may also assume
that there is a € L, such that =¢(8,a) for all 8 € D. Then define f, : D — MUl to be
the function f,(8) := f(B) N{x € M : a € z}. The function f, satisfies all properties
of lemma since D is infinite there is & € D N W; a (notice W corresponds to Xy in
lemma which is a contradiction. This shows the claim.

Fix a € W and take a cone D such that « € D C W and L, = Lg for all 8 € D, which
exists by the assumption on W. Throwing away finitely many points by the claim, we can
assume that o ¢ W;. Thus we can define (uniformly) for each o« € W, each 1 <i < s and

each a € L, the function
fg’l : Da — Bz

where D, C D and B; are maximal for witnessing ¢(a,a) for all @ € L,. Each f%*
is definable so by the induction hypothesis it is either a local C-isomorphism or locally
constant on a cofinite subset of D,. Since L, is constant, there are finitely many possible
combinations for the set {f%:a € L,,1 <1i < s,} to have I3 local C-isomorphisms and
lo locally constant functions where « ranges in W. For those subsets of W where both [y

and [y are different from 0, f is reducible to the family (f1, f2), where

i {v € f(a):3a € LoABy € C(Vi_1 VB € Do(f(B)* = f(a)®%))}
fa(@) = f(a) \ fi(a)
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and the result follows by induction. So we may suppose that f&¢ is either locally constant
or a local C-isomorphism for all a € L, and all 1 < i < s,. Then, by definition, f
is locally constant in the first case and a local multi-isomorphism in the second. This
completes this case. Again, notice that if f is locally constant then it is continuous. For
local multi-isomorphisms continuity follows by lemma This completes the proof for
the case Z = M.

Cases Z =T and Z = Lj: Since functions to T or Ly are in definable bijection, we
only consider the case Z = T. For a € dom(f) set now T, := f(«). Analogously as in the
previous case we decompose dom(f) into finitely many 1-cells such that T, = T for all
a, B belonging to the same 1-cell. If for such a 1-cell Y and a € Y the isomorphism type
of T, is not an antichain, then f is reducible to a family of functions (fi, ..., fs) where
s — 1 is the height of T, and each f; is defined as f;(a) = {a € T, : a has height ¢ — 1},
and the result follows by induction. It remains the case where Y is a cell such that T, is
an antichain for all & € Y. We define L,, g, 79 and s exactly as in the previous case and
by the same argument we are reduced to the cases where there is a 1-cell W such that
g | W is either locally constant or a local multi-isomorphism.

e Case 1) Suppose that g [ W is a local multi-isomorphism. We cannot apply the
same argument because the C-structure we have now in the codomain of f might not be
dense. Nevertheless this is exactly why the notion of multi-isomorphism is different for M
and for T'(M). In fact, in this case f is also a local multi-isomorphism by lemma

e Case 2) The argument here is the same as in case 2 for Z = M. As before, continuity
follows by lemma [39]

Cases Z =C and Z = L, for 0 < n < w: Consider the function f : M — T(M)[F]
defined by f() := {min(D) : D € f(a)}. By reducing to a family of functions we may

assume that f is well-defined for all @ € dom(f). By the case Z = T and possibly reducing
to a family of functions, we may assume that dom( f ) = dom(f) can be finitely decomposed
into cells such that on each infinite cell f is a local multi-isomorphism or locally constant.
Let be X such a cell and o € X. If f is a local multi-isomorphism on X then so is f
by definition. But by lemma [30] there are no C-isomorphisms from M to C or L, for
0 < n < w, so this situation cannot occur. So assume that f is locally constant on X. By
C-minimality, since locally all images of f are (unions of) cones with the same base we

have that X = A U B where

A={ae€ X :3D, € C(a € Do ANVB,7v € Daf(B) = f(7))}
B={aeX:3DycCla € Dy AVB#~ € Daf(B)N f(7) =0}

Clearly f | A is locally constant. We claim that B is finite. For if not, let B’ C B
be a cone. Since B’ is infinite, there are @ # § € B’ and cones B,, Bg containing « and
[ respectively such that § ¢ B, and o ¢ Bg. By assumption we have that f(B,) and
f(Bg) are two disjoint infinite sets of cones at the same node of T'(M ), which contradicts
C-minimality. This implies already the continuity condition.

Case Z = Z: By reducibility and cell decomposition we can assume that the functions
fi : M — T(M) and f; : M — T(M)*2] sending o respectively to the set of left and
right end-points of f(«) are well-defined and that f;(«) and f,(«) are cells in M|[f;(«)] and
M| f, ()] respectively. By the case Z = T and possibly reducing to a family of functions,
we may assume that dom(f;) = dom(f;) = dom(f) can be finitely decomposed into cells
such that on each infinite cell f; and f, are continuous and either local multi-isomorphisms
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or locally constant. This implies already the continuity of f by definition of its topology.
Let be X such a cell and o« € X. If f, is a local multi-isomorphism and f; is a either
a local multi-isomorphism or locally constant, then f is a local multi-isomorphism by
definition. Notice that the combination f; being a local multi-isomorphism and f, being
locally constant is impossible (it contradicts that T is a tree). Clearly if both functions
are locally constant then f is also locally constant. [

3 Dimension and the cell decomposition theorem

We start this section showing that dense C-minimal structures have a well-behaved
topological dimension. Lemma and the rough cell decomposition (proposition and
corollary proved in section ?? are sufficient to prove this. Through the section M will
be a dense C-minimal structure. We start with a definition:

Definition 42. Let X be a subset of M". The dimension of X, denoted dim(X), is the
maximal integer k < n such that there is a projection ¢ : M™ — MP* (which does not need
to be onto the first k& coordinates) for which m(X) has non-empty interior in M*.

By density, a definable subset D C M has dimension 1 if and only if it contains a
cone, i.e., if and only if it is infinite. We cannot generalise this to higher dimensions.
In fact, the existence of C-minimal structures having bad functions, i.e., definable partial
functions f : M — T containing a cone in their domain for which f is a C-isomorphism,
shows that we can have n-cell D of type (Z{Tl], e gn}) where Z; # M for all 1 <i<mn
such that dim(D) < n. Indeed, if f is such a function and D is a cone on which f is a
C-isomorphism, the definable set defined by {(a,3) € M? : B € Aoy} is a cell of type
(C, Lo) with empty interior in M?2. Still, we are able to prove the following theorem.

Theorem 43. Let X1, ..., X, be definable subsets of M™. Then

dim (U XZ) = max{dim(X;) : 1 <i < m}.
i=1

Proof: Let X =J*; X; and k = dim(X). The proof goes by induction on n.

e For n = 1, if X is finite there is nothing to prove. If X is infinite, there is some
1 < i < m such that X; is infinite and hence contains a cone, i.e., it has non-empty
interior.

e Assume the result for all integers less than n. Given that X; C X forall 1 <i<m
we have that & > max{dim(X;) : 1 < ¢ < m}. For the converse, we must find some
1 < i < m such that dim(X;) = k. By corollary we may assume that each X; is
an almost n-cell for all 1 < ¢ < m. We split in two cases. Suppose first that £ < n.
Then there is a projection 9 : M™ — MP* such that (X ) has non-empty interior. Since
P(X) = Ui, ¥(X;), by induction hypothesis there is some 1 < i < m such that (X;)
has non-empty interior. Therefore dim(X;) = k. Now suppose that k£ = n. We may
assume that for all 1 < i < m, if (ZY"’], e T[LT"}) is the type of X; then Z, # M. This
is because if Z, = M then X \ X; will still have non-empty interior.? Let U C X be a
basic open and 7 : M™ — M"~! be the projection onto the first n — 1 coordinates. For
(a,8) € U € M™ 1 x M let UP := {(x,8) € U}. Since U is a basic open, 7(U?) is a

3. One can prove this formaly by induction on n. The base case corresponds to the fact that the union
of two finite sets is finite. The inductive case reduces one of the coordinates to the base case.
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basic open too. Moreover, since 7(U?) = U™, 7(X; N U?), by induction hypothesis there
is 1 <4 < m such that 7(X; N UP) has interior. Let V C 7(X; N U?) be an open set.
Hence by definition of U8 we have that V x {8} C X;. Now since X; is an almost n-cell,
it is of the form X; = {(x,y) € 7(X;) x M : y € U f(z)} where f : 7(X;) = ZI' is a
definable function and Z is either C,Z and £; for | < w. Consider the definable function
h:V — Br(p)U{—oo} where h(y) is the base of the maximal cone containing 8 which
is contained in f(y). By lemma [31 there are V/ C V containing o and b < 3 such that
h(v) < b for all v € V'. We show that V' x T'y(8) C X;, which shows that X; has non-
empty interior. For (v,0) € V' x T,(8), we have that v € m(X;) and that 8 € f(vy). Now
0 € I'y(B) which by assumption is contained in f(y), hence § € f(v) so (v,d) € X;. O

Definition 44. Let X be a subset of M™ and 1) : M™ — MP* be a projection. We say
is finite for X if for every a € X the set {f € X : ¢(a) = ¢(B)} is finite. We say v is
open for X, if ¢(X) is open in M*.

It is important to remark here that given a subset X C M™ there is a unique natural
number k for which a projection 7 : M™ — MP¥ is finite and open. Indeed, if there is
another projection p : M™ — M? with k < s, then one can prove that 7 is not finite for X
using one of the components not dropped by p and dropped by w. If s < k the argument
is analogous exchanging the role of = and p.

Theorem 45. Let X be a definable subset of M™. Then X can be partitioned into definable
sets X1, ..., X, for which there are natural numbers ki, ..., ky such that for 1 <i < m
there is a projection m; : M™ — M which is finite and open for X;.

The proof goes by induction on n.

efForn=1, bythere is a 1-cell decomposition {X7y,..., X} of X. If X, is a 1-cell
of type Ml then set k; = 0. If X; is a 1-cell of type ZI"il for Z #* M, set k; = 1. By
density, X; contains a cone and the identity function is a finite and open projection for
X;.

e Assume the result for all n’ < n. By proposition X can be decomposed into
finitely many almost n-cells, so without loss of generality we may assume that X is an

almost n-cell. Let (Zyﬂ, . ZLT”]) be the type of X. We split in cases.

Case 1: Suppose first that thereis 1 < iy < nsuch that Z;, = M. Let 7 : M"™ — Ml
be the projection dropping the z'f]h coordinate. By induction hypothesis we have that
m(X) is partitioned into definable sets Yi,...,Y,, such that for each 1 < i < m there
are projections 7; : Y; =& M ki which are open and finite for ;. For each 1 < i < m let
X; := 7 Y(¥;) N X. Then Xy,...,X,, form a definable partition of X. We claim that
miom: M™ — MP¥: are finite and open projections for X; for all 1 < i < m. That they are
open follows directly since m; o w(X;) = m;(Y;) which is open by assumption. Take o € X;.
Since m; is finite for 7(X;), the set {5 € 7n(X;) : m(B) = mi(n(«))} is finite, say S, ..., Bs.
Since

{(BeX;:mon(B)=mom(a)=n""(B1)U---Ur ! (B1),

given that 7—1(3;) is finite for each 1 < j < s by assumption, we have that m; o 7 is finite
for X; for each 1 < i <m.

Case 2: Suppose that Z; # M for all 1 <i < n. Let 7 : M™ — M™ ! now denote the
projection onto the first n — 1 coordinates. Consider the following definable subset of X:

W = {(a,8) € 7(X)xM : there is a basic open B of M" ! s.t.a € B and Bx{8} C X}.
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We show that W is open and that V' := X \ W can be partitioned into finitely many
sets satisfying the conditions of the theorem. This completes the proof since the identity
function witnesses the result for W. Let f : 7(X) — 7} be the definable function such
that X = {(«,8) € n(X) x M : g € U f(a)}. Take (a,3) € W and B the maximal box
such that « € B and B x {#} C X. Consider the function h : B — Br(f)U{—oc} sending
~ € B to the base of the maximal cone contained in f(7) which contains 5. By lemma
there are a open set D C B containing o and b < 8 such that for every v € D we have
that h(y) < b. We show that D x I',(8) C W. Take (v,9) € D x I'y(f). By assumption,
(v, 8) € W which implies that I',(8) C f(v) and hence (v, d) € W. This shows W is open.

It remains to show the theorem for V. By definition, for every (a, §) € V' we have that
the set
Vg:={zen(V): (z,8) eV}

has empty interior. The idea here is to apply the induction hypothesis to (V') and take as
projections 7w x ¢d. To do this correctly, we have to force a partition using the lexicographic
order on the set of possible projections from with domain M™~ 1. So for § € "~12 we let
79 be the projection of M™~! onto those coordinates for which #(i) = 1. Providing "~'2
with the lexicographic order, for each 3 € M and each 6 € "~'2 we define by induction
on "~12 the sets

Sg = {a € V3 : |m, H(mp()) N V3] is finite and o ¢ SE for any p < 60}.

Let € € "~12 the function for which €(i) = 1 for all 1 < i < n, so that 7 is the identify
function. By definition, my is finite for Sg and Sg N Sﬁ = () for 6 # p. Since V3 C Mt
by induction hypothesis, we have that V3 = U{Sg : 0 < €}, give that S? has interior and
Vs does not. Hence the sets

Vg::{(a,ﬁ)GV:aESGﬁ}

form a definable partition of V for each 6 < e. Let rk() be >.7-{' (i) and define the
projection 7g : M™ — M O+ by 7y(a, B) := (me(c), B). This projection is finite for Vp
given that gy is finite for S’g. Fix 6 < e. Since 0 < 1, k() < n —1, s0o rk(0) +1 < n.
Thus 79(Ve) € M+ 5o by induction hypothesis 7g(Vp) is a disjoint union of finitely
many definable sets V!, ..., V,?, each with a finite open projection 2/)]9 Then wje o Ty is
a finite open projection for 7, '(Vp ;). Since Vp is the disjoint union of the sets %g_l(Vej),
this shows the result for V. O

We prove now the cell decomposition theorem for dense C-minimal structures. The
only difference with the rough version we already proved is piecewise continuity of definable
functions. We include the proof for completeness which follows the same ideas of [HM94]
simplifying some of the arguments.

Theorem 46. Let X be a definable subset of M™. Then

(Ayn) for X1,..., X, definable subsets of X, there is a cell decomposition D of X respecting
Xl, ey Xm,‘

(By) for f: X — ZU' a definable function where Z is either M, T,C,T or L; for | < w,
X has a cell decomposition D such that f [Y is continuous for each' Y € D.

Proof: We prove (A,,) and (By,) simultaneously by induction on n. Propositions (A;)
and (Bj) correspond respectively to [21] and Suppose (A4;) and (B;) for all i < n.
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(A,): We start showing the case m = 0 or, in other words, that any definable set
X C M™ has a cell decomposition. Let 7 be the projection onto the first n — 1 coordinates
and ¢(x,y) be the formula defining D where |z| = 1 and x corresponds to the variable
which is dropped by the projection 7. For o € w(X) welet X, :={f € M : M |= ¢(B,a)}.
Then by proposition there is a definable finite partition P of 7(D) such that for each
A € P, X, uniformly decomposes into finitely many 1-cells, say ¥{ (M, ), ..., w,‘?A (M, «).
By (A,_1), we may assume each A € P is already an (n — 1)-cell. Suppose that ¥ (z, )
defines a 1-cell of type ZI"). Then we have a definable function h{‘ : A — ZI'l defined by
hi(a) = (M, a). By (Bn_1), A decomposes into finitely many cells D1}, ...,DfA such
that hf‘ I D% is continuous for all 1 < j < s4. Doing the same for each wiA and each

J
AGP,thesetD:{Y;f}:AGP,ISiSnA,lngSA}Where

YA ={(a,B) € D} x M : B € hi*(a)}

is a cell decomposition of X. Now to show (A4,,), we may assume without loss of generality
that X1,..., X, form a definable partition of X. Applying the previous result to each X;
entails (A,) for X and X3,..., X,.

(B): By theorem we may assume that there is a projection ) : M™ — MP* which
is finite and open for X. We divide the proof in two parts: part [I] shows the result for
k < n by induction on k and part [II] shows the result for k£ = n.

Part [I]: If & = 0 the result follows directly from (A;). Suppose the result for all
0 < i < k < n. Without loss of generality we can suppose that ¢ is a projection onto the
first k coordinates (no cells argument will be used here). Consider the definable set

Z :={(a, ) € M* x M™ " : there is an open set B containing a such that
B x {8} C X and f(x, ) is continuous on B}.

By X \ Z has a definable partition into sets X7, ..., X, for which there are projections
7+ M™ — MP¥ such that m; is finite and open for X; for each 1 < i < m. We show
that k; < k for all 1 < ¢ < m, so by induction we have the result for X \ Z. Fix some
1 < i < m. Without loss of generality we may assume that m; is a projection onto the
first k; coordinates where k; < k. Suppose towards a contradiction that k; = k. Then,
for (a, B) € X; with |a| = k, there is an open set B such that « € B and B x {#} C X;.
Since (v, () ¢ Z for all v € B, the function f(x,3) | D is not continuous on any open
set D C B. By induction, B decomposes into cells Dy, ..., Ds such that f(z,8) | D; is
continuous for all 1 <1 < s. But by theorem [43| there is 1 < i < s such that D; is open,
which contradicts the previous. To complete the induction it remains to show that (B;,)
holds for Z. By (A,), it is enough to show that f is continuous on Z. Let (a,f) € Z
be such that |a| = k and 8 = (f51,...,Bn—k). For 1 <i < n — k, consider the definable
function h; : 7(Z) — Br(f;) U{—oo} where h;(7) is sent to the base of the maximal cone
FE such that
ZN{y}xMx---MxExMx---M={«,B},

which exists given that ¢ is finite for Z. Let U be an open set of Z["! containing f(a, §).
By definition of Z, there is an open B containing « such that f(B x {8}) C U. By lemma
@ applied to hy ..., h,_j, there are open sets By, ..., B,_1 contained in B and containing
a and b; < (; such that h;(vy) < b; for each 1 <1i < n — k. By assumption we have that

ZNBxTy (B1) x4, (Bn) = B x {8},
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which implies that f(B x I'y, (81) x --- I, (8n)) € U. This completes part [I].

Part [II]: Given that £k = n, X is open. Let 7 denote now the projection onto the
first n — 1 coordinates. Consider the definable sets:

Zy :={(a, B) € M™1 x M : there is an open set B containing « such that
B x {8} C X and f(z, ) is continuous on B}
Zy = {(a, 8) € M" ! x M : there is a cone D containing 3 such that
{a} x D C X and f(«,z) is continuous on D

and either a multi-isomorphism or constant}

By (A,), there is a cell decomposition D of X respecting Z; and Z. It is enough to
show (By,) for each Y € D. By part [I], we can assume Y is open. We show first that
Y C Zy N Z,. Take (a, ) € Y with |f| = 1. By induction, there is a cell decomposition
D’ of 7(Y) such that the function f(z,3) | Y’ is continuous for each Y’ € D’. Since Y is
open, by theorem [43| there is Y/ € D’ containing an open set U. But then there is o/ € U
such that f(z, ) is continuous on a neighborhood of o’ which shows that (o/, 3) € Z1NY.
Since D respects Z7, this implies that Y C Z;. Analogously, by induction there is a cell
decomposition D’ of Y, := {6 € M : (a,d) € Y} such that f(«,x) is continuous on each
cell and either a local multi-isomorphisms or locally constant on each infinite cell. Since Y
is open, there must be at least one Y’ € D’ such that Y” is infinite. Then for 3’ € Y’ there
is a cone D containing " such that f(«,z) is continuous and either a multi-isomorphism
or constant on D. This shows (a, ') € Y N Zy, hence Y C Zs.

Now let (o, 3) € Y and U be an open set in ZI"} containing f(c, 8). By definition of
7 there is an open set B containing « such that f(B x {8}) C U. Consider the definable
function h : B — Br(f8)U{—o00} where h(7) is the base of the maximal cone D containing
B such that f(v,x) is continuous and either a multi-isomorphism or constant on D. Such
a cone exists given that B x {#} C Y. By lemma there are an open set By C B
containing o and b < (8 such that h(y) < b for all v € By. As in previous arguments, it is
not difficult to see that f(By x I'y(8)) CU. O

A Appendix

Proof of lemma [§: Suppose towards a contradiction there is such an a. By C-
minimality, S is equal to a disjoint union of Swiss cheeses Jj_; Hy, where each Hj is
of the form Gy \ Ui%, DF, all Gy, and Dj are either cones or 0-level sets and D N DF = {
for i # j. By assumption, for each N < w there is a sequence of nodes a1 < --- < ay in
o satisfying . Fixing one sequence for each N, define functions fy : {ai,...,an} —
P({Hi,...,Hy}) \ {0} as follows:

Hy. € fn(a;) if and only if Ay, (o) N Hy, # 0.

Since Ag,(a) NS # O we have that fy(a;) # 0. We show that for all N and each
JeP({Hy,...,H,})\ {0}

1fH )] < (n-max{s; +1:1<k<n})™
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This contradicts the fact that N can be arbitrarily big since it bounds the cardinality
of dom(fx) independently of N. Fix N and J € P({Hy,...,H,})\{0}. Take Hy, € J with
k minimal. To each a; € f~!(J) we associate a sequence S using the following algorithm:

1. Start with S being the empty sequence and set x = k.
2. If H, C Ay, (e0) set S = ST (H,) and stop. Otherwise go to step 3.

3. If there is a minimal r such that DY C A, (a), set S = ST (Hy, D¥) and stop.
Otherwise go to step 4.

4. Take the least r such that Ay (o) € DF. Then there is a minimal s such that
Hy C D¥ and Ay, (o) N Hg # (. Set S = ST (H,, D¥) and then z = s. Go to step 2.

The algorithm always ends by [I] and the fact that J is finite. Suppose towards a
contradiction that there exist a; and a; with the same associated sequence. Then there
is either Hg or D? at the end of the sequence which is contained in both A, (o) and
Aq;(a). This contradicts that Ag,(a) N Ag, () = 0. Therefore, a bound for all possible
such sequences gives us also a bound for |f~!(J)|. In particular, we have a crude bound
like |f~1(J)| < (n-max{sy +1:1<k<n})" O

Proof of lemma[I0: Suppose towards a contradiction there are such sequences of arbi-
trarily large length. Consider the partial type

Y(2)={Fwo...Jzn_1Tyo ... Fyn—1ON(T0s - -, TN-1, 2, Y05 - - -, YN—1) : N < w}.

By assumption, ¥(z) is consistent. Let « be an element realizing ¥ in a elementary
extension M’ of M. Therefore, there are (a; € M’ : i < w) and (B; € M’ : i < w)
satisfying én (o, ..., an—1,,Bo,...,n—1) for all N. This is impossible since for each
i <wtheset S={zre M : f(x)¢ a} satisfies

f(ﬁz) S Ainf(ozi,a) (a) ns and f(al) € Ainf(ai,a) <a> N (MI \ S)

which contradicts lemma @ O
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