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Abstract

Developments in valuation theory, specially the study of algebraically closed valued
fields, have used the model theory of C-minimal structures in different places (spe-
cially the work of Hrushovski-Kazdhan in [HK] and Haskell-Hrushovski-Macpherson
in [HHM]). We intend with this text both to divulgate a basic comprehension of
C-minimality for those mathematicians interested in valuation theory having a basic
knowledge in model theory and to provide a slightly different presentation of the cell
decomposition theorem proved by Haskell and Macpherson in [HM94].

Studying algebraic structures from a model-theoretic point of view can be described
as studying the category of definable sets of algebraic structures: objects correspond
to definable sets (i.e., solution sets of a particular first order formula) and morphisms
correspond to definable functions (i.e., functions for which the graph is a definable set).
A model theoretic perspective allows different ways of generalizing properties one can
extract from algebraic structures. For instance, quantifier elimination for real closed fields
(R,≤,+, ·, 0, 1) implies that definable subsets of R are exactly the semi-algebraic sets
but also induced the fruitful notion of o-minimality: an ordered structure (M,≤, ...) is
o-minimal if every definable subset of M is a finite union of points and intervals. In the
same spirit, quantifier elimination for theories of valued structures like algebraically closed
valued fields or the p-adic fields induce different notions of minimality, C-minimality being
one of them. The aim of the text is to provide the reader with a basic comprehension of
C-minimality (hopefully giving her tools to easy the reading of articles like [HK, HHM]),
and to expose a proof of a deep theorem proved by Haskell and Macpherson in [HM94]:
the cell decomposition theorem for dense C-minimal structures. We do not present new
results and most of the article follows the same scheme as [HM94] though most of the
proofs (and some definitions) have been simplified (and in some cases corrected). Section
1 contains a brief introduction to C-minimality together with definitions, examples and
basic properties. In section 2 we define what cells are and study definable functions.
Finally the cell decomposition theorem is proved in section 3 together with some results
about dimension.

Notation will be standard with the following remarks. Capital L is restricted for first-
order languages (with all possible subscripts and superscripts like L′, L0, etc.). For a
set A, L(A) is the expansion of L with a new constant for every element in A. We say
a formula φ has parameters from A if it is an L(A)-formula. Given an L-structure M ,
A ⊆ Mn and a formula φ(x) with |x| = n (the length of the tuple), we denote by φ(A)
the set {a ∈ A : M |= φ(a)}. We say A is definable if there is an L(M)-formula φ(x)
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(i.e., allowing parameters from M) such that A = φ(M). If φ is an L-formula we also say
A is 0-definable. We allow a handy ambiguity using M both for an L-structure and its
universe. The automorphism group ofM is denoted by Aut(M). For an ultrametric space
M with map d : M2 → Γ∪{∞} we will denote Γ∪{∞} by dM and assume the function d
is always surjective. If the ultrametric comes from a valuation function v, we also denote
dM by vM . The use of Γ will be restricted to other purposes through the text.

1 Introduction to C-minimality: C-sets, trees and C-minimal
structures

We start this section introducing C-sets and good trees:

Definition 1. Let C(x, y, z) be a ternary relation. A C-set is a structure (M,C) satisfying
axioms (C1)-(C4):

(C1) ∀xyz(C(x, y, z)→ C(x, z, y)),
(C2) ∀xyz(C(x, y, z)→ ¬C(y, x, z)),
(C3) ∀xyzw(C(x, y, z)→ (C(w, y, z) ∨ C(x,w, z))),
(C4) ∀xy(x 6= y → C(x, y, y)),
(D) ∀xy(x 6= y → ∃z(z 6= y ∧ C(x, y, z))).

If in addition (M,C) satisfies axiom (D) we say it is a dense C-set.

Examples 2.
• The trivial C-relation on a set M defined by C(x, y, z)⇔ x 6= y = z.
• For every ultrametric d : M2 → Γ ∪ {∞} there is a C-relation defined by C(x, y, z) ⇔
d(x, y) < d(y, z). In particular, for a valued structure there is an associated C-relation
defined by the induced ultrametric d(x, y) := v(x − y), i.e., C(x, y, z) ⇔ v(x − y) <
v(y − z).
• For T a tree and A a set of branches of T (i.e., maximal chains of T ), there is a C-relation

on A defined by C(x, y, z)⇔ x ∩ y = x ∩ z ⊂ y ∩ z.

Let (T,≤, inf, F ) be a meet semi-lattice tree where inf(a, b) denotes the meet of a and
b and F is a unary predicate denoting the leaves of T (we will abuse notation letting
inf(A, b) := sup{inf(a, b) : a ∈ A} if existing).

Definition 3. A good tree is a structure (T,≤, inf, F ) satisfying axioms (T1)− (T4):
(T1) (T,≤, inf) is a meet semi-lattice tree,
(T2) ∀x(F (x)↔ ¬∃y(x < y)) (F is the set of leaves),
(T3) ∀x∃y(x ≤ y ∧ F (y)) (T has leaves everywhere),
(T4) ∀x(¬F (x)→ ∃yz(y 6= z ∧ x < y ∧ x < z)) (every point which is not a leaf branches),
(D’) ∀xy(F (x) ∧ F (y) → ∃w(w 6= y ∧ F (w) ∧ inf(x, y) < inf(y, z))) (the set of leaves is

dense).
If in addition it satisfies (D’) then it is called a dense good tree.

Theorem (Adeleke, Neumann, Delon). C-sets and good trees are bi-interpretable classes.
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Bi-interpretability, essentially means that each structure can be recovered as a quotient
of the other by a definable equivalence relation. Adeleke and Neumann shown one direction
of this theorem in [AN98] for dense C-sets and the statement as it is presented here is due
to Delon in [Del11]. We briefly sketch the construction. For a good tree T , we define a
C-relation on the set of leaves F by:

C(x, y, z)⇔ inf(x, y) = inf(x, z) < inf(y, z).
βα γ

inf(β, γ)

inf(α, β) = inf(α, γ)

For the converse, if (M,C) is a C-set, there is a good tree denoted T (M) and called
the canonical tree of M , which is interpretable in M , having as its universe the set of
equivalence classes of elements of M2 modulo the equivalence relation ∼ defined by:

(a1, a2) ∼ (b1, b2) iff M |= ¬C(a1, b1, b2) ∧ ¬C(a2, b1, b2) ∧ ¬C(b1, a1, a2) ∧ ¬C(b2, a1, a2).

The set of leaves of T (M) equipped with the C-relation above defined is definably isomor-
phic to M . This allows us to identify M in T (M) with the set of leaves F and implies
in particular that an embedding of C-sets f : M → N induces an embedding of good
trees f̂ : T (M)→ T (N) and that the automorphism groups Aut(M) and Aut(T (M)) are
canonically isomorphic. In all [AN98, HM94, MS96] C-sets were by assumption dense.
Without the density assumption we still have that (M,C) is dense if and only if T (M)
is dense. In an ultrametric space M having a C-relation defined as in example 2, T (M)
corresponds to a tree where each branch is isomorphic to a copy of the ordered set dM .
It is also isomorphic to the set of closed balls with inclusion as its order.

A C-structure is simply a C-set with possibly extra structure. In what follows we work
in a fixed C-structure M . We use lower case Greek letters α, β, γ to denote both elements
ofM and leaves in T (M) and lower case letters a, b, c to denote arbitrary elements in T (M)
(contrary to the usual use in valuation theory). From now on we let T := T (M) \F , that
is, all the elements in T (M) which are not leaves. For a ∈ T , we define an equivalence
relation Ea on (a>) (i.e. {b ∈ T (M) : b > a}) by

xEay ⇔ a < inf(x, y).
Equivalences classes are called cones at a. The branching number of a, denoted by

bn(a), is the number of equivalence Ea-classes. For a, b ∈ T such that a < b, the cone of
b at a, denoted by Γa(b), is the Ea-class of b. We abuse notation using Γa(b) to denote
also the subset of M defined by Γa(b) ∩ F (again identifying the set of leaves F with M).
In particular, for α ∈ M and a ∈ T (M) such that a ≤ α, the cone Γa(α) will be usually
taken to be the set {β ∈M : a < inf(α, β)}. For α, β ∈M , we then have that

Γinf(α,β)(α) = {x ∈M : M |= C(β, x, α)}.

In an ultrametric space cones correspond to open balls. For example, if K is a valued field
and we add a symbol for the C-relation defined as in the example 2, we have that

Γinf(α,β)(α) = {x ∈ K : K |= C(β, x, α)} = {x ∈ K : K |= v(α− β) < v(x− α)}.
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For practical reasons we treat M as a cone at ∞, that is, we extend T (M) by adding a
new element −∞ satisfying −∞ < a for all a ∈ T (M) and we let Γ−∞(α) := M for all
α ∈ M . For a ∈ T (M) an n-level set at a corresponds to the set {x ∈ T : a ≤ x} with n
cones at a removed. For n > 0 we require that bn(a) > n. In particular, for a ∈ T (M),
the 0-level set at the 0-level set at a is denoted in symbols by Λa. If a ∈ T , Λa corresponds
to the union of all cones at a; if a = α ∈M , then Λα = {α}. For α, β ∈M we have that

Λinf(α,β) = {x ∈M : M |= ¬C(x, α, β)}.

0-level sets correspond in ultrametric spaces to closed balls, for instance,

Λinf(α,β) = {x ∈M : M |= ¬C(x, α, β)} = {x ∈M : M |= d(x, α) ≥ d(α, β)}.

For b1, ..., bn ∈ T such that a < bi and ¬biEabj for all 1 ≤ i < j ≤ n, the expression
Λa(b1, ..., bn) denotes the n-level set where the n cones removed correspond to Γa(bi) for
1 ≤ i ≤ n (1-level sets are called “thin annulus” in [HK]). Both for cones an n-level
sets, the point a is called its basis and we let min(·) to be the function sending cones and
n-level sets to their bases. Finally, for a, b ∈ T (M) ∪ {−∞}, such that a < b, the interval
(a, b) denotes in T (M) the set {x ∈ T : a < x < b} and in M the set Γa(b) \ Λb. Cones,
intervals and n-level sets can be seen as subsets of T (M) or M and we usually let the
context specify which one is intended. We denote the set of all cones (including M) by
C, the set of all intervals by I and the set of all n-levels by Ln for n < ω. In M , the set
of cones C forms a uniformly definable basis of clopen sets (“uniformly” here means the
same formula is used, changing its parameters, to define all basic open sets ). We work
with the topology generated by this basis which is Hausdorff and totally disconnected.

Definition 4. A C-structureM is C-minimal if for every elementary equivalent structure
N ≡M , every definable subset D ⊆ N is definable by a quantifier free formula using only
the C-predicate. A complete theory is C-minimal if it has a C-minimal model.

Examples 5.
• By quantifier elimination, algebraically closed valued fields are C-minimal with respect
to the C-relation defined by the associated ultrametric (i.e., C(x, y, z)⇔ v(x−y) < v(y−
z)). In [HM94] it was proved that C-minimal fields correspond exactly to algebraically
closed valued fields. If M is a C-minimal field, for all a ∈ T we can identify the set of
cones at a with the residue field. Since the residue field is algebraically closed, we have
in particular that bn(a) ≥ ℵ0 for all a ∈ T .
• By a result of Lipshitz and Robinson in [LR98], algebraically closed valued fields enriched
with all strictly convergent analytic functions are C-minimal.
• Also by quantifier elimination the additive group of the p-adic field is C-minimal.
Though the p-adic field is not.

We now study basic properties of C-minimal structures and assume from now on that
M is a C-minimal structure M in a language L. By axioms (C1)− (C4) below presented,
cones and 0-level sets form a directed family, that is, for B1, B2 ∈ C ∪ L0 one of the
following holds:

B0 ⊆ B1 B1 ⊆ B0 B0 ∩B1 = ∅.

By C-minimality every L(M)-formula φ(x) where |x| = 1 is equivalent to a boolean
combination of formulas of the form C(α1, x, α2) and ¬C(x, α1, α2), which respectively
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define cones and 0-level sets. For instance, finite definable sets {α1, ..., αn} correspond
to the union of 0-level sets ¬C(x, αi, αi) for 1 ≤ i ≤ n and M itself to {x ∈: M |=
¬C(α, x, α)}. A Swiss cheese S is a set of the form B0 \ (B1 ∪ · · · ∪Bn) where each Bi is a
cone or 0-level set, Bi ⊂ B0 for all 0 < i and Bi ∩Bj = ∅ for all 0 < i < j; sets B1, ..., Bn
are called the holes of S. It is not difficult to prove that every definable set defined by
a boolean combination of cones and 0-level sets can be expressed as a disjoint union of
Swiss cheeses (see [Hol95]). An application of the compactness theorem implies then the
following lemma:

Lemma 6. Let φ(x, y) be an L-formula with |x| = 1. There exist positive integers n1 and
n2 such that for all α ∈ M |y|, φ(M,α) is equal to a disjoint union of at most n1 Swiss
cheeses each with at most n2 holes.

Proof: Suppose not. By compactness there is an elementary extension M ≺ M1 and
α ∈M |y|1 such that φ(M1, α) is not a finite disjoint union of Swiss chesses, which contradicts
C-minimality. �

In chapter 2 we will refine the previous lemma showing that every definable unary
subset of M can be uniformly decomposed into a finite disjoint union of points, cones,
intervals and n-level sets. This will be part of the cell decomposition theorem. Given
a set N interpretable in M , that is, a set which correspond to Mn/E for E a definable
equivalence relation, the induced structure on N corresponds to the structure N together
with all relations of cartesian powers of N which are interpretable in M . In many cases,
model theoretic properties from M impose model theoretic properties on their induced
structures. We show some examples.

Definition 7.
1. Let α ∈M . There is a definable equivalence relation Rα on M defined by

Rα(β1, β2)⇔ inf(β1, α) = inf(β2, α).

The structure Br(α) (the branch of α is the induced structure by M on M/Rα.
2. For α, β ∈ M and a = inf(α, β), the structure C(a) is the induced structure by M

on M/Ea. It corresponds to the induced structure on the set of cones at a.

The structure Br(α) is isomorphic as an order to α≤. Thus, in an ultrametric space,
the order Br(α) is isomorphic to dM , for every α ∈M . It is worth noticing that not every
branch of T (M) has a leaf. In particular, in an ultrametric spaceM , branches of T (M) can
be seen as pseudo-Cauchy sequences (which do not necessarily have a limit in M). Recall
an ordered structure (N,≤, ...) is o-minimal is every definable subset D ⊆ N is a finite
union of intervals and points. A structure N is strongly minimal if every definable subset
D ⊆ N is either finite or cofinite (in all elementary equivalent structures). A consequence
of lemma 6 that will be often used is:

Lemma 8. The structure Br(α) is o-minimal for every α ∈ M . For all a ∈ T , the
structure C(a) is either finite or strongly minimal.

Proof: Suppose towards a contradiction that there is a definable subset D of Br(B)
which is not a finite union of points and intervals. Let D′ be the union of all cones
Γinf(α,β(α) for inf(α, β) ∈ D. It is not difficult to see that D′ cannot be a finite union of
Swiss chesses which contradicts C-minimality. Analogously, let D be a definable infinite
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and coinfinite subset D of C(a). Then the set D′ defined as the union of all cones Γa(α)
such that α/Ea ∈ D cannot be a finite union of Swiss cheeses, contradicting C-minimality.
�

Compare the previous lemma to the fact that in an algebraically closed valued field,
the value group is o-minimal and the residue field is algebraically closed, hence strongly
minimal. In proofs, we will usually not make explicit reference to lemma 8 but use expres-
sions like “by o-minimality of the branch...” or “by strong minimality of the set of cones
at a”, etc. We use two lemmas stated without a proof in [HM94] and some corollaries that
will be later used (we provide a proof for lemmas 9 and 10 which correspond to facts 1
and 2 in [HM94] in the appendix).

Lemma 9. Let D ⊆ M be a definable set. Then, there is no α ∈ M such that for an
infinite number of nodes a < α we have both

Λa(α) ∩D 6= ∅ and Λa(α) ∩ (M \D) 6= ∅. (1)
Lemma 10. Let D ⊆ M be a cone and f : D → T be a definable function such that
f(α) ∈ Br(α) for all α ∈ D. Then there are no arbitrarily large sequences α = (αi : i ≤ N)
and β = (βi : i < N) satisfying φN (α0, . . . , αN , β0, . . . , βN−1) defined by

N−1∧
i=0

f(βi) /∈ Br(αN ) ∧
N−1∧
i=0

inf(αi, αN ) = inf(βi, αN ) > f(αi).

Next lemmas will give us different uniform bounds that will be later used for the proof
of the cell decomposition theorem.

Lemma 11. For every L-formula φ(x, y) with |x| = 1, there is a positive integer N
such that for all a ∈ T and all α ∈ M |y| either |{Γa ∈ C : Γa ⊆ φ(M,α)}| < N or
|{Γa ∈ C : Γa ⊆ ¬φ(M,α)}| < N .

Proof: Suppose there is no such N . By compactness, there are an elementary extension
M1 of M , a ∈ T (M1) and α ∈ M |y|1 such that both |{Γa ∈ C : Γa ⊆ φ(M1, α)}| ≥ ℵ0 and
|{Γa ∈ C : Γa ⊆ ¬φ(M1, α)}| ≥ ℵ0 which contradicts the strong minimality of the set of
cones at a in M1. �

Lemma 12. For every formula φ(x, y) with |x| = 1 there is a positive integer N such that
for all α ∈M |y| and all β ∈M the set

A = {a ∈ Br(β) : Λa(β) ∩ φ(M,α) 6= ∅ and Λa(β) ∩ ¬φ(M,α) 6= ∅}

has cardinality less than N .

Proof: If not, by compactness we get α and β in an elementary extension M1 of M
such that A if infinite. This contradicts lemma 9. �

Lemma 13. For every formula φ(x, y) with |x| = 1 there is a positive integer N such that
for all α ∈M |y| and all β ∈M , the cardinality of the set points in Br(β) which are ending
points of intervals maximally contained either in φ(M,α) or in ¬φ(M,α) is less than N .

Proof: If not, by compactness we get a definable infinite discrete subset of Br(β) for
β ∈ M1 and M1 an elementary extension of M . This contradicts o-minimality of Br(β).
�

Assuming density, every cone in a C-structure is infinite. As a consequence dense
C-minimal structures can distinguish between finite and infinite definable sets. We sum-
marize in the following lemma:
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Lemma 14. Suppose M is dense. Then
1. Every cone is infinite.
2. For each L-formulas φ(x, y) with |x| = 1, there is a positive integer Nφ such that for

all α ∈M |y|, if |φ(M,α)| > Nφ then |φ(M,α)| ≥ ℵ0.

Proof: For 2 see [HM94] lemma 2.4. Point 1 follows directly from the density axiom
(assuming M is not just one point). 1 �

Notice that an ultrametric space M is dense (as a C-set) if and only if the order
dM \ {∞} has no maximal element.

2 Cell decomposition revisited
Heuristically, the aim of a cell decomposition theorem is to have a general description

of definable sets as unions of some special -and hopefully simple- definable sets called
cells. Usually one can also imply from it that a given dimension function behaves well
for definable sets. In most cases, cells are defined by induction: given a structure M , one
selects first a collection {Di ⊆ M : i ∈ I} of definable subsets of M to be the family
of 1-cells and then defines by induction n-cells –commonly using definable functions–
which correspond to definable subsets of Mn. We start this chapter defining what cells
are, discussing alternative definitions with examples. Later, we prove a uniform version
of 1-cell decomposition which gives a rough version of cell decomposition for C-minimal
structures (not necessarily dense). Then, assuming density, we study definable functions
and prove, in analogy with o-minimality, a monotonicity theorem for dense C-minimal
structures. Essentially we will prove that definable functions are “cellwise” continuous,
that is, we can always decompose their domain into finitely many cells on which the
function is continuous. 2

2.1 Cells

As before, we work in a C-minimal structure M in a language L. We start showing
how to define an induce C-relation on antichains of T (M). Let S ⊆ T (M) be an antichain
and let T [S] be the closure of S under inf. It is easy to check that T [S] is a good tree,
so the set of leaves in T [S] (which corresponds to S) is a C-set where the C-relation is
given by C(x, y, z) ⇔ inf(x, y) < inf(y, z). The C-set S having T [S] as its canonical tree
is denoted by M [S]. Since M can be identified with the set of leaves of T (M), and any
B ⊆M forms an antichain in T (M), we use the expressions T [B] and M [B] viewing B as
a subset of T (M). Notice that with this notation we have that T (M) = T [M ]. We define
now what 1-cells are. Given a set A, we denote by A[r] the set of all subsets of A of size
exactly r.

Definition 15 (1-cells). Let D be a definable subset of M and L0 be the language con-
taining only the predicate C.

(I) D is a 1-cell of type M [r] if there is {α1, ..., αr} ∈M [r] such that:
(a) D = {α1, ..., αr};
(b) AutL0(M [D]) acts transitively on D.

1. Property (2) is often phrased as the elimination of the quantifier ∃∞.
2. All results were first proved in [HM94], though in the present exposition some definitions differ and

proofs have been changes accordingly.
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(II) D is a 1-cell of type C[r] if there is {H1, ...,Hr} ∈ C[r] such that:
(a) D =

⋃r
i=1Hi;

(b) the set of bases A := {min(Hi) : 1 ≤ i ≤ r} is an antichain;
(c) there is a positive integer k such that for all a ∈ A the set {Hi : min(Hi) =

a, 1 ≤ i ≤ r} has cardinality k;
(d) AutL0(M [A]) acts transitively on A.

(III) D is a 1-cell of type L[r]
n (n < ω) if there is {H1, ...,Hr} ∈ L[r]

n such that
(a) D =

⋃r
i=1Hi;

(b) the set of bases A := {min(Hi) : 1 ≤ i ≤ r} is an antichain of cardinality r;
(c) AutL0(M [A]) acts transitively on A.

(IV) D is a 1-cell of type I [r] if there is {I1, ..., Ir} ∈ I [r] such that
(a) D =

⋃r
i=1{I, ..., Ir},

(b) the set of left end-points A := {a ∈ T (M) : a is a left end-point of Ij for 1 ≤
j ≤ r} is an antichain;

(c) there is a positive integer k such that for all a ∈ A, |{Ij ∈ {I1, ..., Ir} :
a is a left end-point of Ij}| = k;

(d) Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ r;
(e) AutL0(M [A]) acts transitively on A.

It is important to notice that a 1-cell can be of different types. For example a finite
1-cell B = {α1, ..., αr} is of typeM [r] but also of type L[r]

0 since singletons are degenerated
0-level sets. More problematic, in a C-structure M having an element a ∈ T (M) such
that bn(a) = 2, the 1-cell B := Λa is both of type L[1]

0 and of type C[2] since it is also the
union of the two cones at a. We exhibit some examples.

Example 16. Let B := {α, β, γ} be a definable set of type M [3]. Suppose that C(α, β, γ)
holds as in the figure on the left. Then {α} is an orbit of AutL0(B) hence B can be
decomposed as the union of two 1-cells B1 := {α} and B2 := {β, γ}. If in contrast we
suppose that there is no C-relation between α, β and γ, then B is a 1-cell (figure in the
right).

βα γ

B = {α, β, γ}
B2 = {β, γ}B1 = {α}

α
β γ

B = {α, β, γ}

α
β γ

Example 17. Let a1, ..., a6 ∈ T such that ai is the predecessor of ai+1 for all 1 ≤ i ≤ 5.
Suppose in addition that bn(ai) = 2 for all 1 ≤ i ≤ 5. Let B := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where
each Γi is a cone for 1 ≤ i ≤ 4 as shown in the figure (in figures, points are connected by a
dotted line if there is no point between them). On the one hand, since B = Γa1(a2) \Λa6 ,
it is a 1-cell of type I [1]. On the other hand, B is also a set of type C[4] and as such it can
be decomposed into four 1-cells of type C[1] since their bases form a chain.
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a1

a2

a3

a4

a5

a6
Γ1

Γ2

Γ3

Γ4

In [HM94] the definition of 1-cell involves a notion of irreducibility which seems to
depends on the ambient language L (see p. 119-120). The definition of 1-cell here defined
has a similar version but with respect to the minimal language common to all C-minimal
structures, namely L0 = {C}. To get tider definitions of 1-cell one can modify definition
15 letting enrich the language L0 in the automorphism group AutL0 of the C-structures
considered. Nevertheless, if no assumption whatsoever is made about this enriched lan-
guage we may have problems concerning uniformity (see example 24). We give a very
basic example of how to get tider notions of cells.

Example 18. Suppose L contains a predicate D which is interpreted in M as a cone.
Suppose furthermore the automorphism group we look at in definition 15 is defined with
respect to the language L0 = {C,D}. Consider a set B = Λ1 ∪ Λ2 ∪ Λ3 of type L[3]

0 such
that D ⊆ Λ2 as in the figure below. Let A = {min(Λ1),min(Λ2),min(Λ3)}. Then min(Λ2)
is an orbit of AutL0(M [A]), so B can be decomposed into two 1-cells, B1 = Λ1 ∪ Λ3 and
B2 = Λ2. In contrast, B is a 1-cell if we take L0 = {C}.

D

Λ1 Λ2 Λ3

D

Λ1 Λ2 Λ3

All 1-cells are in particular disjoint unions of Swiss cheeses, but given a 1-cell of a
specified type we can recover the elements defining the cell (which is not always the case
with a Swiss cheese). This is the content of the following lemma.

Lemma 19. Let D be a 1-cell of type Z [r]. Then there is only one element in Z [r] satisfying
all properties of definition 15 for D.

Proof: Suppose towards a contradiction there are two different elements {H1, ...,Hr}
and {K1, ...,Kr} in Z [r] satisfying all properties in definition 15 for D. We split in cases
depending on the value of Z.

• Case Z = M : In this case, condition (a) already implies {H1, ...,Hr} = {K1, ...,Kr}.
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• Case Z = C: By assumption, there is 1 ≤ i ≤ r such that Hi 6= Kj for all 1 ≤ j ≤ r.
Be renumbering we may assume i = 1. By condition (a) and renumbering if necessary, we
may assume that H1 ∩K1 6= ∅. Thus, either H1 ( K1 or K1 ( H1. Respectively for each
case, there is 1 < i ≤ r such thatHi∩K1 6= ∅ orKi∩H1 6= ∅. Notice thatHi∩Hj = ∅ for all
0 < i < j ≤ r by condition (b). Suppose without loss of generality the former happens and
by renumbering that i = 2. Let A := {min(Hi) : 1 ≤ i ≤ r}, B := {min(Ki) : 1 ≤ i ≤ r}
and k1, k2 be the positive integers from condition (c) respectively for {H1, ...,Hr} and
{K1, ...,Kr}. Notice that condition (a) implies that every element in A is comparable to
an element of B and viceversa. Since A is an antichain, H2 ⊆ K1. Therefore, given that
min(K1) < min(H1) and min(K1) < min(H2), there must be an element a ∈ A such that
a < b for some b ∈ B, otherwise we contradict the fact that both sets of cones have r
elements. We split in two cases. Suppose first that min(H1) 6= min(H2). In this case,
since B is an antichain we have that C(a,min(H1),min(H2)), which contradicts condition
(d). So suppose that min(H1) = min(H2). This implies that k1 > 1, therefore there are
i, j ∈ {3, ..., n}, i 6= j such that min(Hi) = min(Hj) = a and Hi = Γa(b). Hence, there
is b′ ∈ B such that inf(b, b′) = a. Since A is an antichain, this implies C(min(K1), b, b′)
which contradicts again condition (d).

• Case Z = L0: As before let A := {min(Hi) : 1 ≤ i ≤ r} and B := {min(Ki) : 1 ≤
i ≤ r}. As in the previous case, we may assume H1 ( K1, H2 ( K1 and that there is a ∈ A
such that a < b for some b ∈ B. Here by condition (b) we already have that min(H1) 6=
min(H2) and therefore since A is an antichain we have that C(a,min(H0),min(H1)), which
contradicts condition (c) (of III).

• Case Z = Ln (n > 0): Take A and B as before. Notice that if A = B, condition
(b) already implies the result. So suppose for a contraction that A 6= B. By (a) and
possibly renumbering we may suppose that min(H1) < min(K1) and K1 ( H1. But then,
given that n > 0, there is at least one cone at min(K1) which is not contained in K1 but
contained in H1. Therefore there must be some 1 < i ≤ r such that Ki contains that cone,
but then its base will be comparable with min(K1) which contradicts condition (b).

• Case Z = I: Let Γi \ Λi = Hi and Γ′i \ Λ′i = Ki for all 1 ≤ i ≤ r, A := {min(Γi) :
1 ≤ i ≤ r}, B := {min(Γ′i) : 1 ≤ i ≤ r} and k1, k2 be the positive integers from condition
(c) respectively for {H1, ...,Hr} and {K1, ...,Kr}. As before, we may assume H1 ∩K1 6= ∅
and H1 6= K1. Therefore min(Γ1) and min(Γ′1) are comparable. We split in two cases.
Suppose first that min(Γ1) = min(Γ′1). Without loss of generality suppose that there is
x ∈ H1 \K1, so by condition (a) there is j 6= 1 such that H1 ∩Kj 6= ∅. Hence, min(Γ′1)
and min(Γ′j) are comparable, which since B is an antichain implies they are equal. By (d),
K1 ∩Kj = ∅, but this implies that either Γ′1 or Γ′j does not intersect Γ1, a contradiction.
So suppose min(Γ1) 6= min(Γ′1). Note that conditions (b), (c) and (e) imply that both⋃r
i=1 Γi and

⋃r
i=1 Γi are 1-cells of type C[r], so a similar argument as in case Z = C applies

here. �

To define n-cells we need to provide topologies for all Z [r] where Z is one of M,T, C, I
and Ln for n < ω. Given a basis B = {Ui : i ∈ I} for a topology in Z (= Z [1]), the
topology on Z [r] for r > 1 is given by the following basis: for (i1, . . . , ir) ∈ Ir, a basic open
set of Z [r] is a set of the form {{ai1 , . . . , air} : aij ∈ Uij , 1 ≤ j ≤ r} (allowing here ij = ij′

for j 6= j′). By lemma 2.1 in [HM94], if the topology on Z has a uniformly definable
subbasis, then for any positive integer r the topology on Z [r] has a uniformly definable
subbasis. Therefore we are left with the definitions of topologies on M,T, C, I and Ln for
n < ω. OnM , as previously stated, we take the set of cones as a uniformly definable basis
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for its topology. For the rest we take what could be called interval topologies. For Γ ∈ C
and Λ ∈ L0 a subbasic open of T is defined by

(Γ,Λ)T := {x ∈ T : x ∈ Γ \ Λ}.

Notice that min(Γ) does not belong to (Γ,Λ) by the definition of a cone. Since 0-level
sets and points in T are interdefinable we take the topology in on L0 to be the induced
topology on T , that is,

(Γ,Λ)L0 := {x ∈ L0 : min(x) ∈ (Γ,Λ)T }

In both cases, subbasic open sets are uniformly definable. A subbasic open for the topolo-
gies on the set of cones C and the n-level sets for 0 < n < ω corresponds to

(Γ,Λ)C := {x ∈ C : x ⊆ Γ \ Λ},

(Γ,Λ)Ln := {x ∈ Ln : x ⊆ Γ \ Λ}.

Notice that for a cone D it is not enough that min(D) ∈ (Γ,Λ)T to have that D ∈ (Γ,Λ)C ,
since it could be the case that min(D) ∈ (Γ,Λ) but Λ ⊆ D. The same happens with
n-level sets for n > 0. Finally, the topology in I is the topology induced by the product
topology in T 2, that is, a subbasic open corresponds to

(Γ1,Λ1,Γ2,Λ2) := {I ∈ I : lp(I) ∈ (Γ1,Λ1)T , rp(I) ∈ (Γ2,Λ2)T )},

where lp(I) is the left end-point of I and rp(I) is the right end-point of I. We are now
ready to define n-cells.

Definition 20. Let Y ⊆ Mn be a definable set, n > 1 and π : Mn → Mn−1 be the
projection of Mn onto the first n− 1 coordinates. Y is an n-cell of type (Z [r1]

1 , . . . , Z
[rn]
n ),

where Zi ranges overM, C, I and Lm (m < ω) and ri is a positive integer for all 1 ≤ i ≤ n,
if π(Y ) is an (n− 1)-cell of type (Z [r1]

1 , . . . , Z
[rn−1]
n−1 ) and either:

1. Zn = M and Y = {(y, z) ∈ π(Y ) ×M : z ∈ f(y)}, where f : π(Y ) → M [rn] is a
definable continuous function and f(y) is a 1-cell of type M [rn] for all y ∈ π(Y ).

2. Y = {(y, z) ∈ π(Y ) × M : z ∈
⋃
f(y)}, where f : π(Y ) → Z

[rn]
n is a definable

continuous function, Zn ranges over C, I and Lm (m < ω) and
⋃
f(y) 1-cell of type

Z
[rn]
n for all y ∈ π(Y ).

Y is an almost n-cell if the continuity condition is dropped. A decomposition (resp.
an almost decomposition) of a definable set D ⊆Mn is a finite set of disjoint n-cells (resp.
almost n-cells) {Y1, . . . , Ym} such that D =

⋃m
i=1 Yi. A cell is an n-cell for some positive

integer n.

It is easy to show by induction that Mn is a cell and α ∈ Mn are a cells for all
1 ≤ n < ω. The following shows how to uniformly decompose a definable subset of M
into finitely many 1-cells.

Proposition 21 (Uniform 1-cell decomposition). Let φ(x, y) be an L-formula with |x| = 1.
There is a finite definable partition P ofM |y| such that for each A ∈ P there are L-formulas
ψA1 (x, y), . . . , ψAnA(x, y) satisfying that whenever α ∈ A, {ψA1 (M,α), . . . , ψAnA(M,α)} is a
1-cell decomposition of φ(M,α). Moreover, each formula ψAj (x, y) defines the same type
of 1-cell for each α ∈ A.
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Proof: The proof mimics ideas from proposition 3.7 in [Del11]. For α ∈M |y|, let

T1(α) := {a ∈ T (M) : ∃β(φ(β, α) ∧ a < β) ∧ ∃β(¬φ(β, α) ∧ a < β)}.

Note that T1(α) = ∅ if and only if φ(M,α) = M or φ(M,α) = ∅. Let A0 := {α ∈ M |y| :
T1(α) = ∅}. Since M is a cone (we treat M as a cone at −∞), setting nA0 := 1 and
ψ1

1(x, y) as φ(x, y) we already have the result for A0. Take α ∈ M |y| \ A0 (so T1(α) 6= ∅)
and let Dα := φ(M,α). From now on, to ease notation we omit reference to α if no
ambiguity arises having D = Dα, T1 = T1(α), etc. Consider the sets

X := {a ∈ T (M) : a is a supremum of a branch in T1};
Y := {a ∈ T1 : a branches in T1};

Claim 1: There is a positive integer N such that for all α ∈M |y| \A0 the cardinality
of Xα ∪ Yα is less than N .

Proof of the claim: By lemma 6 there is n such that for all α ∈ M |y|, φ(M,α) is
equivalent to a disjoint union of at most n Swiss cheeses each with at most n holes. For
α ∈ M |y| \ A0 let Bα be the set of bases of cones and 0-level sets in a given Swiss cheese
presentation of φ(M,α). Let T0(α) := cl≤(Bα). One can easily check that independently
of Bα, T1(α) ⊆ T0(α). This implies in particular that T1(α) has finitely many branches
(less than n2) for all α ∈M |y| \A0 and thus finitely many branching points. Consequently,
the cardinality of both Xα and Yα is uniformly bounded, which proves the claim.

We define for a ∈ T1 \ (X ∪ Y ) an element ca = inf{x ∈ X ∪ Y : a < x}, which is
well-defined by the claim. Consider now the sets:

W := {a ∈ T1 \ (X ∪ Y ) : Λa(ca) ∩D 6= ∅ ∧ Λa(ca) ∩M \D 6= ∅)}
V := {a ∈ T1 \ (X ∪ Y ∪W ) : a is the left-ending point of an interval of T1

which is maximal for being contained in {a ∈ T1 \(X∪Y ∪W ) : Λa(ca) ⊆
D or Λa(ca) ⊆M \D}}.

X, Y,W and V also depend on α and are uniformly definable. To stress this dependence
or clarify an ambiguity we add indices and denote them by Xα, Yα,Wα and Vα if needed.

Claim 2: There is a positive integer N such that for all α ∈M |y| \A0 the cardinality
of Fα = Xα ∪ Yα ∪Wα ∪ Vα is less than N .

Proof of the claim: By the claim 1, the cardinality of both Xα and Yα is uniformly
bounded. The cardinalities of Wα and Vα are uniformly bounded by lemmas 12 and 13
respectively. This completes claim 2.

For each α ∈M |y| \A0 we consider Fα = Xα ∪ Yα ∪Wα ∪ Vα as a finite tree structure
with predicates for X,Y,W and V . By claim 2, there are finitely many non-isomorphic
such tree structures. Hence, there is a definable finite partition P of M |y| \ A0 such that
α and α′ are in the same element of P if and only if Fα ∼= Fα′ . Fix A ∈ P and α ∈ A. Let
r be the root of Fα and for a, b ∈ Fα such that a < b, let a+(b) be the successor of a in
the interval (a, b] in Fα. Both r and a+(b) exist since Fα is finite. Consider
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• Z1 := {Λa ∩D : a ∈ X};
• Z2 := {

(
Λa \

⋃
b∈X,a<b Γa(b)

)
∩D : a ∈ Y };

• Z3 := {Λa(ca) ∩D : a ∈W};
• Z4 := {Λa(ca) ∩D : a ∈ V };
• Z5 := {

(
Γa(b) \ Λa+(b)

)
∩D : a ∈ Y, b ∈ X such that a < b};

• Z6 := {(Γa(ca) \ Λa+) ∩D : a ∈W};
• Z7 := {(Γa(ca) \ Λa+) ∩D : a ∈ V };
• If T (M) has no root, then Z8 = {(M \ Λr) ∩D}.

Elements in Z1 to Z4 are either cones or n-level sets and elements in Z5 to Z8 are
intervals. That D =

⋃8
j=1

⋃
Zj can be checked by cases and is left to the reader. We now

decompose into 1-cells. We first deal with the problem of fixing their type of cell. For each
a ∈ F let na be the number of cones at a contained in D and ma the number of cones
at a contained in M \ D. By lemma 11, there is a positive integer N such that for all
α ∈M |y| \A0 and all a ∈ F , either na < N or ma < N . We associate to each z ∈

⋃4
i=1 Zi

a pair (nz,mz) ∈ (N ∪ {∞})2 where for a the base of z, nz is the number of cones at a
contained in z and mz is the number of cones at a contained in M \ z. Analogously, for
an interval z ∈

⋃4
i=1 Z4i+1 we let lz to be the number of intervals in

⋃4
i=1 Zi+1 having the

same left-ending point as z. Let ht(Fα) = h and for i ≤ h let Fα(i) be the set of nodes
in Fα of height i. Clearly Fα(i) is an antichain for each i ≤ h. Consider the following
definable sets:

• Let (n,m) ∈ (N ∪ {∞})2 be such that n =∞ or (n,m) = (0, 0). For i ≤ h, let

B(n,m, i) = {a ∈ Fα(i) : a = min(z), (nz,mz) = (n,m), z ∈
4⋃
i=1

Zi}.

Since B(n,m, i) is an antichain, let O1, ..., Ok be the orbits of AutL0(M [B(n,m, i)])
(notice that k is uniformly bounded by |X|). Set νnmij(M,α) as the union of all
z ∈

⋃4
i=1 Zi for which (nz,mz) = (n,m), ht(min(z)) = i and min(z) ∈ Oj for

j ≤ k. Let s be the number of such elements. By construction, if non-empty, the
set νnmij(M,α) is a 1-cell of type L[s]

m .
• Let (n,m) ∈ (N ∪ {∞})2 be such that 0 < n ≤ N . For i ≤ h, let

B(n,m, i) = {a ∈ Fα(i) : a = min(z), (nz,mz) = (n,m), z ∈
4⋃
i=1

Zi}

A before, let O1, ..., Ok be the orbits of AutL0(M [B(n,m, i)]). Set τnmij(M,α) as the
union of all z ∈

⋃4
i=1 Zi for which (nz,mz) = (n,m), ht(min(z)) = i, min(z) ∈ Oj

for j ≤ k. Let s be the number of such elements. By construction, if non-empty, the
set τnmij(M,α) is a 1-cell of type C[s].
• For i ≤ h, and l < N let

B(l, i) = {a ∈ Fα(i) : a is the left-endpoint of an element z ∈
4⋃
i=1

Z4i+1, l = lz}

Let O1, ..., Ok be the orbits of AutL0(M [B(l, i)]). Set τl,i(M,α) as the union of all
z ∈

⋃4
i=1 Zi for which (nz,mz) = (n,m), ht(min(z)) = i, min(z) ∈ Oj for j ≤ k. Let

s be the number of such elements. By construction, if non-empty, the set ξli(M,α)
is a 1-cell of type I [s].
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Let {θi(x, y) : 0 < i < KA} be an enumeration of all formulas τnmij(x, y), νnmij(x, y)
and ξli(x, y) for (n,m) ∈ Sα and k, l < N × |X|. Then refine P letting α, α′ belong in the
same element of P if and only if Fα ∼= Fα′ and θi(M,α) 6= ∅ if and only if θi(M,α′) 6= ∅
for all 0 < i < KA. Now, for A ∈ P, let {ψ(x, y)Ai : 0 < i < nA} be an enumeration of all
formulas θi(x, y) such that θi(M,α) 6= ∅. It is clear that

nA⋃
i=1

ψAi (M,α) =
8⋃
i=1

⋃
Zi = φ(M,α).

�

Remark 22. It is worth noting that the type of all 1-cells in the above proof correspond
only to n-level sets, cones and intervals without having 1-cells of type M [r] (points were
treated as 0-level sets). If densityis assumed, by lemma 14 we can further suppose that
1-cells of type Z [r] for Z either C, I or Ln (n < ω) appearing in the 1-cell decomposition
of a definable set are always infinite, letting finite 1-cells to be only of type M [r]. This
is a simple application of the elimination of the quantifier ∃∞ (property 2 in lemma 14).
Without the elimination of ∃∞ we could have a C-minimal structure as in the figure below,
having a family of arbirary large finite 0-level sets, which implies they could not be defined
in a cell decomposition as cells of type M [r] for some positive integer r.

n

For φ(x, y) a formula with |x| = 1, the set of discrete points in φ(M,α) is uniformly
definable for all α ∈ M |y| and by C-minimality and density always finite. Then one can
provide a cell decomposition of φ(M,α) where all 1-cells of type Z [r] with Z 6= M contain
at least one cone, hence there are infinite.

In order to obtain a uniform cell decomposition we gave up in some cases intuition.
For instance, an interval can have different decomposition depending on the type of the
parameters. We present an example in valued groups that shows this.

Example 23. Let LG = {+, div, 0} be the language of valued groups where div is a binary
predicate interpreted as

div(x, y)⇔ v(x) ≤ v(y).

Consider the following L-formula

φ(x, y1, y2) := ¬div(x, y1) ∧ ¬div(y2, x).

(A) Let K be an algebraically closed valued field and M its reduct to the language
LG, which is also C-minimal. Here every branch is isomorphic to the value group (which is
dense as an order) and we identify points in any branch with points in v(K). Let α denote
a tuple (α1, α2) and D := φ(M,α). Proposition 21 gives us a partition P = {A0, A1},
where A0 := {α ∈M2 : v(α1) ≥ v(α2)} and A1 := M2 \ A0. Clearly, D = ∅ if and only if
α ∈ A0. For α ∈ A1, Fα is linearly ordered, X = {v(α2)} (where we regard all values like



2.1 Cells 15

v(α2) as elements in the branch of 0), Yα = ∅ given that there are no branching points,
W = ∅ and Vα = {v(α1)}. The only element in

⋃8
i=1 Zi which is not empty is the element

in Z7 that corresponds to the interval Γv(α1)(v(α2)) \ Λv(α2). This shows that φ(M,α) is
already a 1-cell of type I [1] for all α ∈ A1.

(B) Consider nowM ′ be the additive group of the 2-adic field in the language LG. M ′
is C-minimal. Again, every branch can be identified with the value group but in contrast
here the value group is Z which is discrete. Moreover we have that bn(a) = 2 for all
a ∈ T . Proposition 21 gives us the same partition P = {A0, A1} but with a different 1-cell
decomposition. Given that the order is discrete, Xα = {v(α2)−1}. Therefore, for α ∈ A1,
φ(M,α) is decomposed into the cone at v(α2)−1 which does not contain v(α2) (remember
bn(a) = 2, so this is well-defined) and the interval Γv(α1)(v(α2)) \ Λv(α2)−1. This shows
φ(M,α) is not a 1-cell in this case.

v(α2)

v(α2)− 1

v(α1)

v(α1)

v(α2)

Γv(α2)−1(v(α2))

Γv(α1)(v(α2)) \ Λv(α2)−1Γv(α1)(v(α2)) \ Λv(α2)

M M ′

Next example exhibits a potential problem that might arise by letting L0 be any
sublanguage of the ambient language in the definition of 1-cells (def. 15).

Example 24. LetM be a dense pure C-minimal structure, i.e., in the language L0 := {C}.
Let X be an infinite discrete subset of M . By C-minimality, X is not definable. Let M ′
be the expansion of M adding constants for each element of X, i.e., we consider M in the
language L = L0(X). Since C-minimality is preserved by adding constants, M ′ is also
C-minimal. Consider for y = (y1, y2) the formula

φ(x, y) := (x = y1 ∨ x = y2) ∧ y1 6= y2.

Suppose 1-cells are defined with respect to the language L instead of L0 in definition
15 and in addition, towards a contradiction, that proposition 21 is true for this notion
of 1-cell. Then there is an L-definable finite partition P of M2 such that for each
A ∈ P there are L-formulas ψA1 (x, y), . . . , ψAnA(x, y) satisfying that whenever α ∈ A,
{ψA1 (M,α), . . . , ψAnA(M,α)} is a decomposition of φ(M,α) and each formula ψAj (x, y) de-
fines the same type of 1-cell for each α ∈ A. In this case, there are only two possible
decompositions for φ(M,α) namely, either the union of two 1-cells of type M [1] or a 1-cell
of type M [2]. For α = (α1, α2), if the decomposition of φ(M,α) is the union of two 1-cells
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then either α1 or α2 must lie in X since this is the only case where they can be in differ-
ent orbits of AutL([{α1, α2}]). Let A ∈ P be the subset of M2 such that for all α ∈ A
the decomposition of φ(M,α) is the union of two 1-cells. For β ∈ M \ X, we have that
{α1 ∈M : (α1, β) ∈ A} = X, which contradicts the fact that X is not definable.

Proposition 21 gives the following rough version of cell decomposition:

Proposition 25. Every definable set D ⊆Mn has an almost cell decomposition.

Proof: The proof goes by induction on n. The case n = 1 corresponds to an instance of
proposition 21. Let π be the projection onto the first n−1 coordinates. Let φ(x, y) be the
formula definingD where |x| = 1 and x corresponds to the variable which is dropped by the
projection π. For α ∈ π(D) we let Dα := {β ∈ M : M |= φ(β, α)}. Then by proposition
21, there is a definable finite partition P of π(D) such that for each A ∈ P, Dα uniformly
decomposes into finitely many 1-cells, say ψA1 (x, y), ..., ψAl (x, y). By induction, we may
assume each A ∈ P is already an (n − 1)-cell. Suppose that ψAi (x, y) defines a 1-cell of
type Z [r]. Then we have a definable function hAi : A→ Z [r] defined by hAi (α) = ψAi (M,α).
Doing the same for each ψAi and each A ∈ P we get functions hAi of the desired form. The
sets Y A

i = {(α, β) ∈ π(A)×M : β ∈ hAi (α)} form a disjoint union of almost n-cells whose
union is D. �

Corollary 26. Let X ⊆ Mn be a definable subset and X1, ..., Xs definable subsets of X.
Then X can be partitioned into finitely many almost n-cells Y1, ..., Ym of Mn respecting
each Xi, i.e, if Xi ∩ Yj 6= ∅ then Yj ⊆ Xi.

Proof: Apply the previous result to each X ∩
⋂
X
δ(i)
i where δ ∈s 2 and X1

i := Xi and
X0
i := M \Xi for all 1 ≤ i ≤ s. �

2.2 Definable functions and “cellwise” continuity

Through this section M will be a dense C-minimal L-structure. We aim to prove the
following theorem (all terms to be defined):

Theorem 27 (Haskell and Macpherson). Let Z be one of M,T, C, I or Ln for n < ω.
Let r be a positive integer and f : M → Z [r] be a definable partial function. Then there
is a decomposition of dom(f) into finitely many cells on which f is continuous. On each
infinite cell, f is reducible to a family of definable functions each of which is either a local
multi-isomorphism or locally constant.

This is an analogous version of the o-minimal monotonicity theorem (see [PS86, KPS86])
for C-minimal structures. To prove it one has to deal with the case r = 1 first and then
generalise it to multi-functions. We start with some definitions.

Definition 28. Let M and N be two C-structures. A partial function f : M → N is a
C-isomorphism if it is injective and preserves the C-relation. It is a local C-isomorphism
if for every α ∈ dom(f) there is a cone D ⊆M such that α ∈ D ⊆ dom(f) and f � D is a
C-isomorphism.

Proposition 29. [Haskell-Macpherson] Let f : M → T (M) be a definable partial function.
Then, dom(f) can be written as a definable disjoint union of sets F ∪ I ∪K where F is
finite, f is a local C-isomorphism on I and f is locally constant on K.
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Proof: We present only a sketch of the proof. Two cases are distinguished. First,
one supposes that the image of the function is an antichain (this covers already the case
im(f) ⊆M). The key idea here is to consider for each α ∈ dom(f) a uniformly definable
partial function φα with domain Br(α) and range Br(f(α)) as follows:

φα(a) = b if and only if f(Λa(α)) ⊆ Λb(f(α)).

One shows that for a fixed α ∈ dom(f) the function φα is well-defined in a cofinite
subset of {inf(α, β) : β ∈ dom(f)}. Once this is proved, by density, the set

D := {α ∈ dom(f) : {inf(α, β) : β ∈ dom(f)} is cofinal in α}

is cofinite, so one may assume dom(f) = D. Then, by the monotonicity theorem for
o-minimal structures (remember by lemma 8 Br(α) is o-minimal), for each function φα
we have that φα is either monotonically increasing, monotonically decreasing or constant
on a cofinal segment of α, so one partitions dom(f) into subsets

• P = {α ∈ dom(f) : φα is monotonically increasing on a final segment of Br(α)}
• R = {α ∈ dom(f) : φα is monotonically decreasing on a final segment of Br(α)}
• K = {α ∈ dom(f) : φα is constant on a final segment of α}.

One is able to show then that R is finite, f is a local C-isomorphism on a cofinite
subset of P and locally constant on a cofinite subset of K. To deal with the general case,
one partitions dom(f) into the following sets (for a, b ∈ T (M) we use a ‖ b to say that a
and b are incomparable):
• J1 = {α ∈ dom(f) : there is a cone D containing α s.t. ∀β ∈ D \ {α}(f(β) > f(α))};
• J1 = {α ∈ dom(f) : there is a cone D containing α s.t. ∀β ∈ D \ {α}(f(β) < f(α))};
• J3 = {α ∈ dom(f) : there is a cone D containing α s.t. ∀β ∈ D \ {α}(f(β) ‖ f(α))};
• J4 = {α ∈ dom(f) : there is a cone D containing α s.t. ∀β ∈ D \ {α}(f(β) = f(α))};
• J5 = dom(f) \ J1 ∪ J2 ∪ J3 ∪ J4.

By density, J5 is finite. The proof is completed showing that J1 and J2 are finite
(an argument by contradiction building sequences as in lemma 10) and that f is a local
C-isomorphism on J3 (notice that f is locally constant by definition on J4). �

We give a more detailed proof of the fact that every definable function is continuous
almost everywhere.

Lemma 30. Let f : M → Z for Z either M,T, C, I or Ln for n < ω be a definable partial
function. Then f is continuous on a cofinite subset of dom(f).

Proof: The set A := {α ∈ dom(f) : f is not continuous at α} is definable in all cases
given that all topologies have a uniformly definable subbasis. Suppose towards a contra-
diction that A is infinite. Then it contains a cone E. We split the proof by cases depending
on Z.

Case Z = M : By proposition 29, dom(f) decomposes into sets F ∪ I ∪ K where
F is finite, f is a local C-isomorphism on I and locally constant on K. Being locally
constant already implies continuity, so without loss of generality may assume that f is a
C-isomorphism on E. Therefore f(E) is infinite, hence contains a cone which contradicts
that E ⊆ A.
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Case Z = T : Again by proposition 29 we are reduce to the case where f is a C-
isomorphism on E. Take α ∈ E. For α ∈ E, given that E ⊆ A, there is an open set
(Γ,Λ)T containing f(α) such that for all cones H containing α we have that f(H) 6⊆
(Γ,Λ)T . In particular, for E, given that f � E is a C-isomorphism, this implies there
is β ∈ E such that f(β) /∈ (Γ,Λ)T hence f(β) ∈ Λ. Given that f(E) is an antichain,
inf(min(Λ), f(α)) 6= f(α), since otherwise f(α) < f(β). Thus there is b > f(α) such that
Λb ⊆ (Γ,Λ). By density, there is also some γ ∈ E such that C(β, α, γ). Then the open set

(Γ′Λ′)T := (Γinf(f(γ),f(α))(f(α)),Λb)T

contains f(α) and is contained in (Γ,Λ), therefore cannot contain f(H) for any cone H
containing α. This is true in particular, for the cone Γinf(α,γ)(α) ⊆ E. Hence there is δ
such that f(δ) ∈ Λb, but then f(α) < b ≤ f(δ) which contradicts the fact that f(E) is an
antichain.

Cases Z = C and Z = Ln: Functions from M to L0 are in bijection with functions
to T , so we may assume that 0 < n < ω. We prove in this case that f is locally constant
in a cofinite subset of dom(f), which implies continuity. Let f̂ : M → T be the induced
function defined by f̂(α) := min(f(α)). By proposition 29, dom(f̂) is decomposed into
sets F ∪ I ∪K where F is finite, f̂ is a local C-isomorphism on I and locally constant on
K. Take α ∈ K and let D ⊆ K be a cone containing α such that f̂ is constant on D.
Notice that the set of cones contained in K and containing α is totally ordered (and can be
identified with a cofinal subset of Br(α)). Hence by lemma 9 and strong minimality of the
set of cones at f̂(α), f must be constant on some cone containing α. To finish the proof,
we show I is empty. For suppose not and let D be a cone on which f̂ is a C-isomorphism.
Consider the following definable set

X :=
{
f(D) if Z = C⋃
{x ∈ Λmin(f(α)) \ f(α) : α ∈ D} if Z = L for 0 < n < ω.

In both cases, given that f̂ is a C-isomorphism on D, X is the union of infinitely many
cones having their basis at the antichain f̂(D) and satisfying for all a ∈ f̂(D) there is
β ∈ Λf̂(α) \X (here we use the fact that n 6= 0). But by the proof of theorem 21, the tree

T (X) := {a ∈ T : ∃β(β ∈ X ∧ a < β) ∧ ∃β(β ∈M \X ∧ a < β)},

has finitely many branches, which contradicts the fact that f̂(D) is an infinite antichain.

Case Z = I: By the definition of the topology on I, the almost everywhere continuity
of f is reduced here to the case Z = T since it follows by the almost everywhere continuity
of the induced functions fl : M → T and fr : M → T sending an element α respectively
to the left and right end-points of the interval f(α). �

We give an application that will be heavily used:

Lemma 31. Let I be a totally ordered subset of T (M) ∪ {−∞} with no greatest element
and f : Mn → T (M) be a definable partial function with rng(f) ⊆ I. Then, for all
α ∈ Mn there are b ∈ I and a basic neighborhood U of α such that for all x ∈ U if f(x)
is defined then f(x) < b.

Proof: The proof goes by induction on n.
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To prove cell decomposition we need to extend the result to multi-functions. We need
first to define what is the corresponding notion of C-isomorphism in this cases, which
leads to the concept of multi-isomorphism. Recall that for a function f : M → Z [r] and
D ⊆M , f(D) denotes

⋃
{f(x) : x ∈ D} and we call r the multi-degree of f .

Definition 32. Let M be a C-set and r be a positive integer.
a) A definable partial function f : M → T (M)[r] is a strong multi-isomorphism if

S := im(f) is an antichain and there are cones B1, . . . , Br in M [S] such that:
(i) for all β ∈ dom(f) and all 1 ≤ i ≤ r, |f(β) ∩Bi| = 1
(ii) for 1 ≤ i ≤ r the map fi : dom(f) → M [S] defined by fi(β) := f(β) ∩ Bi is a

C-isomorphism.
b) A partial definable function f : M → T (M)[r] is a multi-isomorphism if there are

s ≤ r, a strong multi-isomorphism f̂ : M → T (M)[s] with dom(f̂) = dom(f) and a
definable antichain A of T (M) such that

f(α) = {x ∈ A : ∃b ∈ f̂(α)(b ≤ x)}.

c) A partial definable function f : M → Z [r] where Z is either C or Ln for n < ω is a
multi-isomorphism if:
(i) For all α ∈ dom(f), f(α) is a cell of type Z [r]

(ii) The induced function fmin : M → T (M)[k] (for k ≤ r) defined by fmin(α) =
{min(F ) : F ∈ f(α)} is a multi-isomorphism.

d) A partial definable function f : M → I [r] is a multi-isomorphism if:
(i) for all α ∈ dom(f), f(α) is a cell of type I [r]

(ii) the induced functions fl : M → T (M)[s1] and fr : M → T (M)[s2] sending α
respectively to left and right end-points of elements in f(α) satisfy that fr is a
multi-isomorphisms and fl is either constant or a multi-isomorphism.

e) For f : M → Z [r] where Z is any of T (M), C or Ln for n < ω, we say that f is a
local multi-isomorphism (local strong multi-isomorphism) if for all α ∈ dom(f) there
is a cone D with α ∈ D ⊆ dom(f) such that f � D is a multi-isomorphism (resp.
strong multi-isomorphism).

Remark 33. By the definition of T (M), the case f : M → M [r] is contained in part
(a) of the previous definition given that we can see this function as a function of the
form f : M → T (M)[r] where im(f) is a subset of the set of leaves of T (M) which is
identified with M itself. Moreover notice that M [M ] = M . In addition, for r = 1, both
notions of multi-isomorphism and strong multi-isomorphism coincide with the notion of
C-isomorphism. Condition (i) in parts (c) and (d) are used only to guarantee that the
functions fmin, fl and fr are well defined (it might happen that there is α ∈ dom(f) such
that F1, F2 ∈ f(α) satisfy min(F1) = min(F2), so one has to be careful when choosing the
multi-degree of fmin).

Definition 34. Let Z be one of T (M), C or Ln for n < ω. Let r,m and k be positive
integers and f : Mm → Z [r] be a definable partial function. We say that f is reducible to
the family (f1, . . . , fk) if and only if for each 1 ≤ i ≤ k,

• fi : Mm → Z [si] is a definable partial function.
• dom(fi) = dom(f).
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•
∑k
i=1 si = r.

• For every α ∈ dom(f), f(α) =
⋃k
i=1 fi(α).

The function f is irreducible if there is no non-trivial such reduction of f .

Remark 35. If f is reducible to the family (f1, ..., fk) and each fi is reducible to a family
(g1
i , ..., g

si
i ) then f is reducible to the family (g1

1, ..., g
s1
1 , ..., g

1
k, ..., g

sk
k ). Notice also that if

f is reducible to the family (f1, ..., fk) and each function fi in the family is continuous at
α then f is continuous at α.

Example 36. Let A = [0, 1) ∩ Q ordered with the usual order. Set T1 to be the good
tree where all branches are order isomorphic to A and bn(a) = 2 for all a ∈ T1 (it is
not difficult to show the existence of such object), and T2 to be the good tree with 3
elements (two incomparable elements above the roor). Let M1,M2 be their corresponding
induced C-sets. Let M be the C-set M1 o M2 o M1, i.e., elements in M are triples
(a, b, c) ∈ M1 ×M2 ×M1 and where the point a can be identified with its corresponding
leaf in the first copy of T1 and (a, b) with the corresponding leaf in T1 o T2. For every
a ∈ M1 we denote by ba1 and ba2 the 2 nodes in T (M) which are successors of a (see the
figure).

ba1 ba2

a

MM1

M1

M2

a

b

a

MM1

M1

M2

a c

c

bc1
bc2

(a, b, c)(a, b, a)

Consider the function f : M → T [2] mapping (a, b, c) to {bc1, bc2}. We show that f is a
local multi-isomorphism but not a local strong multi-isomorphism. Notice first that im(f)
is an antichain that corresponds to M1 oM2, i.e. to the leaves of T1 o T2. Suppose for
a contradiction f is a local strong multi-isomorphism. Let α = (a, b, c) ∈ M and D be
a cone containing it. If there where cones B1 and B2 satisfying conditions (i) − (ii) in
part (a) of definition 32 then |f(α) ∩ Bi| = 1 for all i = 1, 2. By the definition of T2 this
implies that |Bi| = 1 which contradicts the fact that f � D is a C-isomorphism since D is a
dense cone. To show f is a local multi-isomorphism consider the function f̂ : M → T (M)
defined by f̂(α) = inf(f(α)). Let D be the cone Γ(a,b)(α) and A := f(D). The set A is a
definable antichain since it is the set of all elements in T (M) with a predecessor. It is easy
to see that f̂((a, b, c)) = c and since D ∼= M1 ∼= im(f̂), we have that f̂ is a local strong
multi-isomorphism. Moreover f(α) = {x ∈ A : x > b for some b ∈ f̂(α)}. It is worthy
to notice that f is an irreducible function (this is mainly because the elements {bc1, bcn}
have the same imaginary type over {c}, hence cannot be separated by a definable partial
function).
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Lemma 37. Let f : M → T (M)[r] and g : M → T (M)[s] be two partial definable functions
such that s < r, dom(f) = dom(g) and for all α ∈ dom(f) we have that f(α) is an
antichain and for all b ∈ f(α) there is a ∈ g(α) such that a < b. Then if g is a local
multi-isomorphism so is f .

Proof: Let α ∈ dom(f). By definition of local multi-isomorphism, there is a cone D
such that α ∈ D ⊆ dom(g) and g � D is a multi-isomorphism. This implies that there are
a positive integer s′ ≤ s, a strong multi-isomorphism ĝ : D → T (M)[s′] and a definable
antichain A0 of T (M) such that g(β) = {x ∈ A0 : ∃b ∈ ĝ(β)(b < x)}. Consider the
following definable subset of T (M)

A := {x ∈ f(D) : ∃b ∈ g(D)(b ≤ x)}.

We claim that ĝ and A witness that f � D is a multi-isomorphism. We first show that
A is in fact an antichain. For suppose there are y, x ∈ A such that and x < y. Let α, β ∈ D
such that x ∈ f(α) and y ∈ f(β). By assumption there are a ∈ g(α) and b ∈ g(β) such
that a ≤ x and b ≤ y. Since ĝ is a strong multi-isomorphism there are cones B1, ..., Bs′

in M [ĝ(D)] such that the functions ĝi : D → M [ĝ(D)] defined by ĝi(β) := ĝ(β) ∩ Bi for
1 ≤ i ≤ s′ are C-isomorphisms. Moreover, there are c ∈ ĝ(α) and d ∈ ĝ(β) such that
c < a ≤ x and d < b ≤ y. Since c, d < y they are comparable, but ĝ(D) is an antichain,
hence c = d. Since the cones B1, ..., Bs′ are disjoint, there is a unique i in {1, ..., s′} such
that c ∈ Bi. Hence we have that ĝi(α) = c = d = ĝ(β). Since ĝi is injective we must have
that α = β. But then we have a contradiction since by assumption f(α) is an antichain
and x, y ∈ f(α) are comparable. Now that we know that A is an antichain we simply
check that

f(α) = {x ∈ A : ∃b ∈ g(α)(b < x)} = {x ∈ A : ∃c ∈ ĝ(α)(c ≤ x)}

which shows that f is a local multi-isomorphism. �

Lemma 38. Let Γ ⊆M be a cone and let f : Γ→M [s] be a definable function such that
for some a ∈ T (M)

{inf(γ, γ′) : ∃α, β ∈ Γ(γ ∈ f(α) ∧ γ′ ∈ f(β))} = {a}.

Then Γ \Xf is finite where

Xf := {α ∈ Γ : ∃Dα, B1, ..., Bs ∈ C(α ∈ Dα ⊆ Γ ∧ ∀β ∈ Dα

s∧
i=1

(|f(Dα) ∩Bi| = 1))}.

Proof: We prove this by induction on s. For s = 1, by proposition 29 we have that
f is either locally constant or a local C-isomorphism on a cofinite subset X0 of Γ. This
implies that X0 ⊆ Xf , thus Γ \Xf is finite. Suppose the lemma is true for all k < s and
all definable functions with multi-degree k. Suppose towards a contradiction that Γ \Xf

is infinite and let D be an infinite cone contained in Γ \Xf . We spli in two cases.
Suppose for all α ∈ D, there is no γ ∈ f(α) such that Γa(γ) ∩ f(D) is infinite. By

C-minimality this implies there is a cone D0 ⊆ D where f is injective. Let D1, D2 ⊆ D0
be two disjoint cones. By injectivity we have that such that f(D1) ∩ f(D2) = ∅. But
by assumption each f(Di) must be infinite which contradicts the strong minimality at a.
Suppose then there are α and γ ∈ f(α) such that Γa(γ)∩f(D) is infinite. Then f−1(Γa(γ))
is infinite too, so let D0 ⊆ D be a cone contained in f−1(Γa(γ)). Define f̂ : U → M [s−1]
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by f̂(α) = f(α) ∩ Λa(γ), which is well defined by the choice of D0. By induction, there
are finitely many elements in D0 \Xf̂ . For α ∈ D0 \Xf̂ let Dα and B1, ..., Bs−1 such that∧s−1
i=1 (|{x ∈ f̂(β) : x > a} ∩ Bi| = 1). Setting Bs = Γa(γ), since Dα ⊆ D0, we have that∧s
i=1(|{x ∈ f(β) : x > a} ∩Bi| = 1), which shows α ∈ Xf , a contradiction. �

Lemma 39. Let f : M → Z [r] be a definable partial function where Z is either M , T
or L0. If f is a local multi-isomorphism, then f is continuous on a cofinite subset of its
domain.

Proof: The set A := {α ∈ dom(f) : f is not continuous at α} is definable in all cases
given that all topologies have a uniformly definable subbasis. Suppose towards a contra-
diction that A is infinite. Then it contains a cone E. We split in cases depending on the
value of Z.

Case Z = M : Since f is a local multi-isomorphism, without loss of generality we may
assume that f is a multi-isomorphism on E. This implies that for 1 ≤ ß ≤ r there are
cones Bi such that |f(β) ∩ Bi| = 1 for all β ∈ E and the function fi : E → Bi defined
by f(β) ∩ Bi is a C-isomorphism. Given that the cones B1, . . . , Br are pairwise disjoint,
f(E) ⊆ B1 × · · · ×Br is open, which contradicts that E ⊆ A.

Case Z = T or Z = L0: The case Z = L0 is reduced to the case of Z = T
by the definition of its topology. Again, since f is a local multi-isomorphism, without
loss of generality we may assume that f is a multi-isomorphism on E. This implies
there is a strong multi-isomorphism f̂ : M → T [s] and a definable antichain S such that
f(α) = {x ∈ S : ∃b ∈ f̂(α)(b < x)} for all α ∈ E. By definition of strong multi-
isomorphism there are cones B1, . . . , Bs such that for each 1 ≤ i ≤ n, |f̂(α) ∩ Bi| = 1
for all α ∈ E and the function f̂i : E → Bi defined by f̂(α) ∩ Bi is a C-isomorphism.
Therefore f̂1(E), . . . , f̂s(E) are cones. For α ∈ E take (Λ1, ...,Λr) be such that for each
1 ≤ i ≤ r there is a ∈ f(α) such that a < min(Λi). Consider the open set of T [r] given
by U = {{a1, ..., ar} : ai ∈ (Bj ,Λi)T ,min(Bj) < min(Λi)}. This open set contains α. We
show that f(E) ⊆ U . Let β ∈ E. By assumption f(β) = {x : ∃b ∈ f̂(β)(b < x)}, so given
that f̂(E) ⊆ B1 × · · · × Bs, we have that for all b ∈ f(β) there is some 1 ≤ j ≤ s such
that b ∈ Bj . Moreover given that S is an antichain, b /∈ Λi for all 1 ≤ i ≤ r, therefore for
each b ∈ f(β) there is one open set (Bj ,Λi) containing b. This contradicts that f is not
continuous at α. �

We are now ready to prove theorem 27:

Proof of theorem 27: Let f : M → Z [r] be a partial definable function. The proof
goes by induction on r and the case r = 1 corresponds to theorem 29 and lemma 30. It is
worthy to notice that if Y ⊆ dom(f) is a 1-cell such that f � Y is reducible to a family of
functions (f1, ..., fk), then on Y the result follows by the induction hypothesis and remark
35, since the multi-degree of each fi is strictly less than r. As usual, we split in cases
depending on the value of Z:

Case Z = M : For each α ∈ dom(f), let Tα be T [f(α)] (the closure of f(α) under
inf, which is in particular finite) and Lα be the set of leaves of Tα \ f(α). Since there are
finitely many isomorphism types of trees Tα, say T1, ..., Tm, we have that

dom(f) =
m⋃
i=1

Xi where Xi := {α ∈ dom(f) : Tα ∼= Ti}.
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Since each Xi is definable, by theorem 21, Xi decomposes into finitely many 1-cells. There-
fore, dom(f) decomposes into finitely many 1-cells such that Tα ∼= Tβ for all α, β belonging
to the same 1-cell. Let Y be such a cell and let α ∈ Y . Since |Lα| = |Lβ| for all β ∈ Y ,
we let r0 = |Lα|. We may assume that for all γ ∈ f(α) there is a ∈ Lα such that a < γ
(see figure 1), for otherwise f � Y can be reduced to the family (f1, f2) where

f1(α) := {x ∈ f(α) : ∃a ∈ Lα(a < x)}
f2(α) := f(α) \ f1(α)

Tα

a1 a2

Lα = {a1, a2}

Tα

a1

Lα = {a1}

γ

Figure 1: Suppose f : M →
(
M
4

)
. In the left-side example, for every x ∈ f(α) there is

a ∈ Lα such that a < γ. In the right-side example there is no a ∈ Lα such that a < γ, hence
f will be reducible in this case.

and the result follows by induction. Notice that the fact that Tα ∼= Tβ for all α, β ∈ Y
implies that f1, f2 are well-defined functions. We may suppose furthermore that for all
α ∈ Y and all a ∈ Lα, the cardinality of the set {x ∈ f(α) : a < x} is the same, since if
there were at least two such different cardinalities, say s1 and s2, f � Y would again be
reducible to (f1, f2) where

f1(α) := {x ∈ f(α) : ∃a ∈ Lα|(a < x)| = s1}
f2(α) := f(α) \ f1(α)

and the result follows by induction (see figure 2).

Figure 2: In the left-side example, we have different cardinalities for the elements above
a ∈ Lα so it is reducible. In the right-side example there they are all the same.

Now define the function g : Y → T (M)[r0] by g(α) := Lα. Since r0 < r, by induction Y
decomposes into finitely many 1-cells such that on each infinite cell W , g �W is reducible
to a family (g1, ..., gl) where each gi is either locally constant or a local multi-isomorphism.
If l > 1, then we can reduce f � W to the family (f1, ..., fl) where fi(α) = {x ∈ f(α) :
∃a ∈ gi(α)(a < x)}, and the result follows by induction. If l = 1, the remaining cases
correspond to whether g �W is locally constant or a local multi-isomorphism:

• Case 1) Suppose that g � W is a local multi-isomorphism. We show this is im-
possible, i.e., we show that W is empty. Otherwise, let α0 ∈ W and D be a cone
containing α0 such that g � D is a multi-isomorphism. Thus, by definition, there are
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k ≤ r0, a strong multi-isomorphism ĝ : D → T (M)[k] and a definable antichain A
such that g(β) = {x ∈ A : ∃b ∈ ĝ(β)(b ≤ x)} for all β ∈ D. By definition of strong
multi-isomorphism, the set S = ĝ(D) is an antichain and there exist cones B1, ..., Bk in
the C-structure M [S] such that for 1 ≤ i ≤ k the function ĝi : D → Bi defined by
ĝi(β) = ĝ(β) ∩ Bi is a C-isomorphism. In particular, since D is infinite this implies that
ĝ(D) is infinite.

Claim 40. For each b ∈ S the set {x ∈ f(D) : b ≤ x} is finite.

We prove in particular that for b ∈ S there is α ∈ D such that {x ∈ f(D) : b ≤ x} =
{x ∈ f(α) : b ≤ x}. Since f(α) is finite this shows the claim. For b ∈ S = ĝ(D), let
α ∈ D such that b ∈ ĝ(α). Let Bi be such that b ∈ Bi, so ĝi(α) = b for some 1 ≤ i ≤ k.
We show that α satisfies what we want. The right-to-left inclusion is trivial. For the
converse, let x ∈ f(β) and b ≤ x. Then there is a ∈ g(β) such that a ≤ x and since
g(β) = {x ∈ A : ∃c ∈ ĝ(β)(b ≤ x}, there is c ∈ S such that c ≤ a ≤ x. Since b, c ≤ x
they are comparable but they both lie in S which is an antichain, which implies b = c.
Therefore ĝi(α) = b = c = ĝi(β), and since ĝi is injective, we have β = α, which finishes
the claim.

But since we have that
⋃
b∈S{x ∈ f(D) : b ≤ x} = f(D), f(D) is an infinite definable

subset of M which by the density assumption does not contain a cone. This contradicts
C-minimality and completes case 1.

• Case 2) Suppose that g �W is locally constant. Consider the formula

ψ(α, a) := {α ∈W : a ∈ Lα ∧ ∃Dα,a, B1, ..., Bs ∈ C(α ∈ Dα ⊆W ∧
∀β ∈ Dα

∧s
i=1(|{x ∈ f(β) : x > a} ∩Bi| = 1))}.

Claim 41. Let W1 := {α ∈W : φ(α, a) holds for all a ∈ Lα}. Then W\W1 is finite.

Proof: Suppose not and let D ⊆W\W1 be a cone and α ∈ D. By the choice of W , we
may assume that Lα = Lβ for all β ∈ D. Moreover, since Lα is finite, we may also assume
that there is a ∈ Lα such that ¬φ(β, a) for all β ∈ D. Then define fa : D → M [s] to be
the function fa(β) := f(β) ∩ {x ∈ M : a ∈ x}. The function fa satisfies all properties
of lemma 38, since D is infinite there is α ∈ D ∩W1 a (notice W1 corresponds to Xf in
lemma 38) which is a contradiction. This shows the claim.

Fix α ∈W and take a cone D such that α ∈ D ⊆W and Lα = Lβ for all β ∈ D, which
exists by the assumption on W . Throwing away finitely many points by the claim, we can
assume that α /∈W1. Thus we can define (uniformly) for each α ∈W , each 1 ≤ i ≤ s and
each a ∈ Lα the function

fa,iα : Dα → Bi

where Dα ⊆ D and Bi are maximal for witnessing φ(α, a) for all a ∈ Lα. Each fa,iα
is definable so by the induction hypothesis it is either a local C-isomorphism or locally
constant on a cofinite subset of Dα. Since Lα is constant, there are finitely many possible
combinations for the set {fa,iα : a ∈ Lα, 1 ≤ i ≤ sa} to have l1 local C-isomorphisms and
l2 locally constant functions where α ranges in W . For those subsets of W where both l1
and l2 are different from 0, f is reducible to the family (f1, f2), where

f1(α) = {γ ∈ f(α) : ∃a ∈ Lα∃B0 ∈ C(
∨s
i=1 ∀β ∈ Dα(f(β)a,i = f(α)a,i))}

f2(α) = f(α) \ f1(α)
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and the result follows by induction. So we may suppose that fa,iα is either locally constant
or a local C-isomorphism for all a ∈ Lα and all 1 ≤ i ≤ sa. Then, by definition, f
is locally constant in the first case and a local multi-isomorphism in the second. This
completes this case. Again, notice that if f is locally constant then it is continuous. For
local multi-isomorphisms continuity follows by lemma 39. This completes the proof for
the case Z = M .

Cases Z = T and Z = L0: Since functions to T or L0 are in definable bijection, we
only consider the case Z = T . For α ∈ dom(f) set now Tα := f(α). Analogously as in the
previous case we decompose dom(f) into finitely many 1-cells such that Tα ∼= Tβ for all
α, β belonging to the same 1-cell. If for such a 1-cell Y and α ∈ Y the isomorphism type
of Tα is not an antichain, then f is reducible to a family of functions (f1, ..., fs) where
s − 1 is the height of Tα and each fi is defined as fi(α) = {a ∈ Tα : a has height i − 1},
and the result follows by induction. It remains the case where Y is a cell such that Tα is
an antichain for all α ∈ Y . We define Lα, g, r0 and s exactly as in the previous case and
by the same argument we are reduced to the cases where there is a 1-cell W such that
g �W is either locally constant or a local multi-isomorphism.

• Case 1) Suppose that g � W is a local multi-isomorphism. We cannot apply the
same argument because the C-structure we have now in the codomain of f might not be
dense. Nevertheless this is exactly why the notion of multi-isomorphism is different for M
and for T (M). In fact, in this case f is also a local multi-isomorphism by lemma 37.

• Case 2) The argument here is the same as in case 2 for Z = M . As before, continuity
follows by lemma 39.

Cases Z = C and Z = Ln for 0 < n < ω: Consider the function f̂ : M → T (M)[k]

defined by f̂(α) := {min(D) : D ∈ f(α)}. By reducing to a family of functions we may
assume that f̂ is well-defined for all α ∈ dom(f). By the case Z = T and possibly reducing
to a family of functions, we may assume that dom(f̂) = dom(f) can be finitely decomposed
into cells such that on each infinite cell f̂ is a local multi-isomorphism or locally constant.
Let be X such a cell and α ∈ X. If f̂ is a local multi-isomorphism on X then so is f
by definition. But by lemma 30 there are no C-isomorphisms from M to C or Ln for
0 < n < ω, so this situation cannot occur. So assume that f̂ is locally constant on X. By
C-minimality, since locally all images of f are (unions of) cones with the same base we
have that X = A ∪B where

A = {α ∈ X : ∃Dα ∈ C(α ∈ Dα ∧ ∀β, γ ∈ Dαf(β) = f(γ))}

B = {α ∈ X : ∃Dα ∈ C(α ∈ Dα ∧ ∀β 6= γ ∈ Dαf(β) ∩ f(γ) = ∅)}

Clearly f � A is locally constant. We claim that B is finite. For if not, let B′ ⊆ B
be a cone. Since B′ is infinite, there are α 6= β ∈ B′ and cones Bα, Bβ containing α and
β respectively such that β /∈ Bα and α /∈ Bβ. By assumption we have that f(Bα) and
f(Bβ) are two disjoint infinite sets of cones at the same node of T (M), which contradicts
C-minimality. This implies already the continuity condition.

Case Z = I: By reducibility and cell decomposition we can assume that the functions
fl : M → T (M)[s1] and fl : M → T (M)[s2] sending α respectively to the set of left and
right end-points of f(α) are well-defined and that fl(α) and fr(α) are cells inM [fl(α)] and
M [fr(α)] respectively. By the case Z = T and possibly reducing to a family of functions,
we may assume that dom(fl) = dom(fl) = dom(f) can be finitely decomposed into cells
such that on each infinite cell fl and fr are continuous and either local multi-isomorphisms
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or locally constant. This implies already the continuity of f by definition of its topology.
Let be X such a cell and α ∈ X. If fr is a local multi-isomorphism and fl is a either
a local multi-isomorphism or locally constant, then f is a local multi-isomorphism by
definition. Notice that the combination fl being a local multi-isomorphism and fr being
locally constant is impossible (it contradicts that T is a tree). Clearly if both functions
are locally constant then f is also locally constant. �

3 Dimension and the cell decomposition theorem
We start this section showing that dense C-minimal structures have a well-behaved

topological dimension. Lemma 31 and the rough cell decomposition (proposition 25 and
corollary 26) proved in section ?? are sufficient to prove this. Through the section M will
be a dense C-minimal structure. We start with a definition:

Definition 42. Let X be a subset of Mn. The dimension of X, denoted dim(X), is the
maximal integer k ≤ n such that there is a projection ψ : Mn →Mk (which does not need
to be onto the first k coordinates) for which π(X) has non-empty interior in Mk.

By density, a definable subset D ⊆ M has dimension 1 if and only if it contains a
cone, i.e., if and only if it is infinite. We cannot generalise this to higher dimensions.
In fact, the existence of C-minimal structures having bad functions, i.e., definable partial
functions f : M → T containing a cone in their domain for which f is a C-isomorphism,
shows that we can have n-cell D of type (Z [r1]

1 , . . . , Z
[rn]
n ) where Zi 6= M for all 1 ≤ i ≤ n

such that dim(D) < n. Indeed, if f is such a function and D is a cone on which f is a
C-isomorphism, the definable set defined by {(α, β) ∈ M2 : β ∈ Λf(α)} is a cell of type
(C,L0) with empty interior in M2. Still, we are able to prove the following theorem.

Theorem 43. Let X1, ..., Xm be definable subsets of Mn. Then

dim
(
m⋃
i=1

Xi

)
= max{dim(Xi) : 1 ≤ i ≤ m}.

Proof: Let X =
⋃m
i=1Xi and k = dim(X). The proof goes by induction on n.

• For n = 1, if X is finite there is nothing to prove. If X is infinite, there is some
1 ≤ i ≤ m such that Xi is infinite and hence contains a cone, i.e., it has non-empty
interior.

• Assume the result for all integers less than n. Given that Xi ⊆ X for all 1 ≤ i ≤ m
we have that k ≥ max{dim(Xi) : 1 ≤ i ≤ m}. For the converse, we must find some
1 ≤ i ≤ m such that dim(Xi) = k. By corollary 26, we may assume that each Xi is
an almost n-cell for all 1 ≤ i ≤ m. We split in two cases. Suppose first that k < n.
Then there is a projection ψ : Mn → Mk such that ψ(X) has non-empty interior. Since
ψ(X) =

⋃m
i=1 ψ(Xi), by induction hypothesis there is some 1 ≤ i ≤ m such that ψ(Xi)

has non-empty interior. Therefore dim(Xi) = k. Now suppose that k = n. We may
assume that for all 1 ≤ i ≤ m, if (Z [r2]

1 , . . . , Z
[rn]
n ) is the type of Xi then Zn 6= M . This

is because if Zn = M then X \ Xi will still have non-empty interior. 3 Let U ⊆ X be a
basic open and π : Mn → Mn−1 be the projection onto the first n − 1 coordinates. For
(α, β) ∈ U ⊆ Mn−1 ×M let Uβ := {(x, β) ∈ U}. Since U is a basic open, π(Uβ) is a

3. One can prove this formaly by induction on n. The base case corresponds to the fact that the union
of two finite sets is finite. The inductive case reduces one of the coordinates to the base case.



27

basic open too. Moreover, since π(Uβ) =
⋃m
i=1 π(Xi ∩ Uβ), by induction hypothesis there

is 1 ≤ i ≤ m such that π(Xi ∩ Uβ) has interior. Let V ⊆ π(Xi ∩ Uβ) be an open set.
Hence by definition of Uβ we have that V × {β} ⊆ Xi. Now since Xi is an almost n-cell,
it is of the form Xi = {(x, y) ∈ π(Xi) ×M : y ∈

⋃
f(x)} where f : π(Xi) → Z [r] is a

definable function and Z is either C, I and Ll for l < ω. Consider the definable function
h : V → Br(β) ∪ {−∞} where h(γ) is the base of the maximal cone containing β which
is contained in f(γ). By lemma 31 there are V ′ ⊆ V containing α and b < β such that
h(γ) < b for all γ ∈ V ′. We show that V ′ × Γb(β) ⊆ Xi, which shows that Xi has non-
empty interior. For (γ, δ) ∈ V ′ × Γb(β), we have that γ ∈ π(Xi) and that β ∈ f(γ). Now
δ ∈ Γb(β) which by assumption is contained in f(γ), hence δ ∈ f(γ) so (γ, δ) ∈ Xi. �

Definition 44. Let X be a subset of Mn and ψ : Mn → Mk be a projection. We say ψ
is finite for X if for every α ∈ X the set {β ∈ X : ψ(α) = ψ(β)} is finite. We say ψ is
open for X, if ψ(X) is open in Mk.

It is important to remark here that given a subset X ⊆Mn there is a unique natural
number k for which a projection π : Mn → Mk is finite and open. Indeed, if there is
another projection ρ : Mn →M s with k < s, then one can prove that π is not finite for X
using one of the components not dropped by ρ and dropped by π. If s < k the argument
is analogous exchanging the role of π and ρ.

Theorem 45. Let X be a definable subset ofMn. Then X can be partitioned into definable
sets X1, ..., Xm for which there are natural numbers k1, . . . , km such that for 1 ≤ i ≤ m
there is a projection πi : Mn →Mki which is finite and open for Xi.

The proof goes by induction on n.

• For n = 1, by 21 there is a 1-cell decomposition {X1, . . . , Xm} of X. If Xi is a 1-cell
of type M [ri] then set ki = 0. If Xi is a 1-cell of type Z [ri] for Z 6= M , set ki = 1. By
density, Xi contains a cone and the identity function is a finite and open projection for
Xi.

• Assume the result for all n′ < n. By proposition 25 X can be decomposed into
finitely many almost n-cells, so without loss of generality we may assume that X is an
almost n-cell. Let (Z [r1]

1 , . . . , Z
[rn]
n ) be the type of X. We split in cases.

Case 1: Suppose first that there is 1 ≤ i0 ≤ n such that Zi0 = M . Let π : Mn →Mn−1

be the projection dropping the ith0 coordinate. By induction hypothesis we have that
π(X) is partitioned into definable sets Y1, . . . , Ym such that for each 1 ≤ i ≤ m there
are projections πi : Yi → Mki which are open and finite for Yi. For each 1 ≤ i ≤ m let
Xi := π−1(Yi) ∩ X. Then X1, . . . , Xm form a definable partition of X. We claim that
πi ◦ π : Mn →Mki are finite and open projections for Xi for all 1 ≤ i ≤ m. That they are
open follows directly since πi ◦π(Xi) = πi(Yi) which is open by assumption. Take α ∈ Xi.
Since πi is finite for π(Xi), the set {β ∈ π(Xi) : πi(β) = πi(π(α))} is finite, say β1, ..., βs.
Since

{β ∈ Xi : πi ◦ π(β) = πi ◦ π(α) = π−1(β1) ∪ · · · ∪ π−1(β1),

given that π−1(βj) is finite for each 1 ≤ j ≤ s by assumption, we have that πi ◦ π is finite
for Xi for each 1 ≤ i ≤ m.

Case 2: Suppose that Zi 6= M for all 1 ≤ i ≤ n. Let π : Mn →Mn−1 now denote the
projection onto the first n− 1 coordinates. Consider the following definable subset of X:

W = {(α, β) ∈ π(X)×M : there is a basic open B of Mn−1 s.t.α ∈ B and B×{β} ⊆ X}.
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We show that W is open and that V := X \ W can be partitioned into finitely many
sets satisfying the conditions of the theorem. This completes the proof since the identity
function witnesses the result for W . Let f : π(X)→ Z

[rn]
n be the definable function such

that X = {(α, β) ∈ π(X) ×M : β ∈
⋃
f(α)}. Take (α, β) ∈ W and B the maximal box

such that α ∈ B and B×{β} ⊆ X. Consider the function h : B → Br(β)∪{−∞} sending
γ ∈ B to the base of the maximal cone contained in f(γ) which contains β. By lemma 31,
there are a open set D ⊆ B containing α and b < β such that for every γ ∈ D we have
that h(γ) < b. We show that D × Γb(β) ⊆ W . Take (γ, δ) ∈ D × Γb(β). By assumption,
(γ, β) ∈W which implies that Γb(β) ⊆ f(γ) and hence (γ, δ) ∈W . This shows W is open.

It remains to show the theorem for V . By definition, for every (α, β) ∈ V we have that
the set

Vβ := {x ∈ π(V ) : (x, β) ∈ V }

has empty interior. The idea here is to apply the induction hypothesis to π(V ) and take as
projections π×id. To do this correctly, we have to force a partition using the lexicographic
order on the set of possible projections from with domain Mn−1. So for θ ∈ n−12 we let
πθ be the projection of Mn−1 onto those coordinates for which θ(i) = 1. Providing n−12
with the lexicographic order, for each β ∈ M and each θ ∈ n−12 we define by induction
on n−12 the sets

Sβθ := {α ∈ Vβ : |π−1
θ (πθ(α)) ∩ Vβ| is finite and α /∈ Sβµ for any µ < θ}.

Let ε ∈ n−12 the function for which ε(i) = 1 for all 1 ≤ i < n, so that πε is the identify
function. By definition, πθ is finite for Sβθ and Sβθ ∩ Sβµ = ∅ for θ 6= µ. Since Vβ ⊆ Mn−1,
by induction hypothesis, we have that Vβ =

⋃
{Sβθ : θ < ε}, give that Sβε has interior and

Vβ does not. Hence the sets

Vθ := {(α, β) ∈ V : α ∈ Sβθ }

form a definable partition of V for each θ < ε. Let rk(θ) be
∑n−1
i=1 θ(i) and define the

projection π̃θ : Mn → M rk(θ)+1 by π̃θ(α, β) := (πθ(α), β). This projection is finite for Vθ
given that πθ is finite for Sβθ . Fix θ < ε. Since θ < 1, rk(θ) < n − 1, so rk(θ) + 1 < n.
Thus π̃θ(Vθ) ⊆ M rk(θ)+1, so by induction hypothesis π̃θ(Vθ) is a disjoint union of finitely
many definable sets V 1

θ , . . . , V
sθ
θ , each with a finite open projection ψθj . Then ψθj ◦ π̃θ is

a finite open projection for π̃−1
θ (Vθ,j). Since Vθ is the disjoint union of the sets π̃−1

θ (V j
θ ),

this shows the result for V . �

We prove now the cell decomposition theorem for dense C-minimal structures. The
only difference with the rough version we already proved is piecewise continuity of definable
functions. We include the proof for completeness which follows the same ideas of [HM94]
simplifying some of the arguments.

Theorem 46. Let X be a definable subset of Mn. Then

(An) for X1, . . . , Xm definable subsets of X, there is a cell decomposition D of X respecting
X1, . . . , Xm;

(Bn) for f : X → Z [r] a definable function where Z is either M,T, C, I or Ll for l < ω,
X has a cell decomposition D such that f � Y is continuous for each Y ∈ D.

Proof: We prove (An) and (Bn) simultaneously by induction on n. Propositions (A1)
and (B1) correspond respectively to 21 and 27. Suppose (Ai) and (Bi) for all i < n.
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(An): We start showing the case m = 0 or, in other words, that any definable set
X ⊆Mn has a cell decomposition. Let π be the projection onto the first n−1 coordinates
and φ(x, y) be the formula defining D where |x| = 1 and x corresponds to the variable
which is dropped by the projection π. For α ∈ π(X) we let Xα := {β ∈M : M |= φ(β, α)}.
Then by proposition 21, there is a definable finite partition P of π(D) such that for each
A ∈ P, Xα uniformly decomposes into finitely many 1-cells, say ψA1 (M,α), ..., ψAnA(M,α).
By (An−1), we may assume each A ∈ P is already an (n− 1)-cell. Suppose that ψAi (x, y)
defines a 1-cell of type Z [r]. Then we have a definable function hAi : A → Z [r] defined by
hAi (α) = ψAi (M,α). By (Bn−1), A decomposes into finitely many cells DA

1 , ..., D
A
sA

such
that hAi � DA

j is continuous for all 1 ≤ j ≤ sA. Doing the same for each ψAi and each
A ∈ P, the set D = {Y A

i,j : A ∈ P, 1 ≤ i ≤ nA, 1 ≤ j ≤ sA} where

Y A
i,j = {(α, β) ∈ DA

j ×M : β ∈ hAi (α)}

is a cell decomposition of X. Now to show (An), we may assume without loss of generality
that X1, . . . , Xn form a definable partition of X. Applying the previous result to each Xi

entails (An) for X and X1, . . . , Xm.

(Bn): By theorem 45, we may assume that there is a projection ψ : Mn →Mk which
is finite and open for X. We divide the proof in two parts: part [I] shows the result for
k < n by induction on k and part [II] shows the result for k = n.

Part [I]: If k = 0 the result follows directly from (An). Suppose the result for all
0 < i < k < n. Without loss of generality we can suppose that ψ is a projection onto the
first k coordinates (no cells argument will be used here). Consider the definable set

Z := {(α, β) ∈Mk ×Mn−k : there is an open set B containing α such that
B × {β} ⊆ X and f(x, β) is continuous on B}.

By 45, X \Z has a definable partition into sets X1, . . . , Xm for which there are projections
πi : Mn → Mki such that πi is finite and open for Xi for each 1 ≤ i ≤ m. We show
that ki < k for all 1 ≤ i ≤ m, so by induction we have the result for X \ Z. Fix some
1 ≤ i ≤ m. Without loss of generality we may assume that πi is a projection onto the
first ki coordinates where ki ≤ k. Suppose towards a contradiction that ki = k. Then,
for (α, β) ∈ Xi with |α| = k, there is an open set B such that α ∈ B and B × {β} ⊆ Xi.
Since (γ, β) /∈ Z for all γ ∈ B, the function f(x, β) � D is not continuous on any open
set D ⊆ B. By induction, B decomposes into cells D1, ..., Ds such that f(x, β) � Di is
continuous for all 1 ≤ i ≤ s. But by theorem 43 there is 1 ≤ i ≤ s such that Di is open,
which contradicts the previous. To complete the induction it remains to show that (Bn)
holds for Z. By (An), it is enough to show that f is continuous on Z. Let (α, β) ∈ Z
be such that |α| = k and β = (β1, . . . , βn−k). For 1 ≤ i ≤ n − k, consider the definable
function hi : π(Z)→ Br(βi) ∪ {−∞} where hi(γ) is sent to the base of the maximal cone
E such that

Z ∩ {γ} ×M × · · ·M × E ×M × · · ·M = {α, β},
which exists given that ψ is finite for Z. Let U be an open set of Z [r] containing f(α, β).
By definition of Z, there is an open B containing α such that f(B×{β}) ⊆ U . By lemma
31 applied to h1 . . . , hn−k, there are open sets B1, . . . , Bn−1 contained in B and containing
α and bi < βi such that hi(γ) < bi for each 1 ≤ i ≤ n− k. By assumption we have that

Z ∩B × Γb1(β1)× · · ·Γbn(βn) = B × {β},
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which implies that f(B × Γb1(β1)× · · ·Γbn(βn)) ⊆ U . This completes part [I].

Part [II]: Given that k = n, X is open. Let π denote now the projection onto the
first n− 1 coordinates. Consider the definable sets:

Z1 := {(α, β) ∈Mn−1 ×M : there is an open set B containing α such that
B × {β} ⊆ X and f(x, β) is continuous on B}

Z2 := {(α, β) ∈Mn−1 ×M : there is a cone D containing β such that
{α} ×D ⊆ X and f(α, x) is continuous on D
and either a multi-isomorphism or constant}

By (An), there is a cell decomposition D of X respecting Z1 and Z2. It is enough to
show (Bn) for each Y ∈ D. By part [I], we can assume Y is open. We show first that
Y ⊆ Z1 ∩ Z2. Take (α, β) ∈ Y with |β| = 1. By induction, there is a cell decomposition
D′ of π(Y ) such that the function f(x, β) � Y ′ is continuous for each Y ′ ∈ D′. Since Y is
open, by theorem 43 there is Y ′ ∈ D′ containing an open set U . But then there is α′ ∈ U
such that f(x, β) is continuous on a neighborhood of α′ which shows that (α′, β) ∈ Z1∩Y .
Since D respects Z1, this implies that Y ⊆ Z1. Analogously, by induction there is a cell
decomposition D′ of Yα := {δ ∈ M : (α, δ) ∈ Y } such that f(α, x) is continuous on each
cell and either a local multi-isomorphisms or locally constant on each infinite cell. Since Y
is open, there must be at least one Y ′ ∈ D′ such that Y ′ is infinite. Then for β′ ∈ Y ′ there
is a cone D containing β′ such that f(α, x) is continuous and either a multi-isomorphism
or constant on D. This shows (α, β′) ∈ Y ∩ Z2, hence Y ⊆ Z2.

Now let (α, β) ∈ Y and U be an open set in Z [r] containing f(α, β). By definition of
Z1 there is an open set B containing α such that f(B×{β}) ⊆ U . Consider the definable
function h : B → Br(β)∪{−∞} where h(γ) is the base of the maximal cone D containing
β such that f(γ, x) is continuous and either a multi-isomorphism or constant on D. Such
a cone exists given that B × {β} ⊆ Y . By lemma 31, there are an open set B0 ⊆ B
containing α and b < β such that h(γ) < b for all γ ∈ B0. As in previous arguments, it is
not difficult to see that f(B0 × Γb(β)) ⊆ U . �

A Appendix
Proof of lemma 9: Suppose towards a contradiction there is such an α. By C-

minimality, S is equal to a disjoint union of Swiss cheeses
⋃n
k=1Hk, where each Hk is

of the form Gk \
⋃sk
i=1D

k
i , all Gk and Dk

i are either cones or 0-level sets and Dk
i ∩Dk

j = ∅
for i 6= j. By assumption, for each N < ω there is a sequence of nodes a1 < · · · < aN in
α satisfying (1). Fixing one sequence for each N , define functions fN : {a1, . . . , aN} →
P({H1, . . . ,Hn}) \ {∅} as follows:

Hk ∈ fN (ai) if and only if Λai(α) ∩Hk 6= ∅.

Since Λai(α) ∩ S 6= ∅ we have that fN (ai) 6= ∅. We show that for all N and each
J ∈ P({H1, . . . ,Hn}) \ {∅}

|f−1
N (J)| ≤ (n ·max{sk + 1 : 1 ≤ k ≤ n})n.
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This contradicts the fact that N can be arbitrarily big since it bounds the cardinality
of dom(fN ) independently of N . Fix N and J ∈ P({H1, . . . ,Hn})\{∅}. Take Hk ∈ J with
k minimal. To each ai ∈ f−1(J) we associate a sequence S using the following algorithm:

1. Start with S being the empty sequence and set x = k.
2. If Hx ⊆ Λai(α) set S = S_(Hx) and stop. Otherwise go to step 3.
3. If there is a minimal r such that Dx

r ⊆ Λai(α), set S = S_(Hx, D
x
r ) and stop.

Otherwise go to step 4.
4. Take the least r such that Λai(α) ⊆ Dx

r . Then there is a minimal s such that
Hs ⊆ Dx

r and Λai(α) ∩Hs 6= ∅. Set S = S_(Hx, D
x
r ) and then x = s. Go to step 2.

The algorithm always ends by 1 and the fact that J is finite. Suppose towards a
contradiction that there exist ai and aj with the same associated sequence. Then there
is either Hs or Ds

r at the end of the sequence which is contained in both Λai(α) and
Λaj (α). This contradicts that Λai(α) ∩ Λaj (α) = ∅. Therefore, a bound for all possible
such sequences gives us also a bound for |f−1(J)|. In particular, we have a crude bound
like |f−1(J)| ≤ (n ·max{sk + 1 : 1 ≤ k ≤ n})n. �

Proof of lemma 10: Suppose towards a contradiction there are such sequences of arbi-
trarily large length. Consider the partial type

Σ(z) = {∃x0 . . . ∃xN−1∃y0 . . . ∃yN−1φN (x0, . . . , xN−1, z, y0, . . . , yN−1) : N < ω}.

By assumption, Σ(z) is consistent. Let α be an element realizing Σ in a elementary
extension M ′ of M . Therefore, there are (αi ∈ M ′ : i < ω) and (βi ∈ M ′ : i < ω)
satisfying φN (α0, . . . , αN−1, α, β0, . . . , βN−1) for all N . This is impossible since for each
i < ω the set S = {x ∈M ′ : f(x) /∈ α} satisfies

f(βi) ∈ Λinf(αi,α)(α) ∩ S and f(αi) ∈ Λinf(αi,α)(α) ∩ (M ′ \ S)

which contradicts lemma 9. �
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